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Abstract

The phenomenon of parametric resonance in a lin-
ear system arising from a periodic modulation of
its parameter is investigated both analytically and
with the help of a computer simulation based on the
educational software package PHYSICS OF OSCIL-
LATIONS (see in the web http://www.aip.org/pas).
The simulation experiments aid greatly an under-
standing of basic principles and peculiarities of para-
metric excitation and complement the analytical
study of the subject in a manner that is mutually
reinforcing.

The parametric excitation is studied on the exam-
ple of the rotary oscillations of a mechanical torsion
spring pendulum caused by periodic variations of its
moment of inertia. Conditions and characteristics
of parametric resonance and of parametric regener-
ation are discussed in detail. Ranges of frequencies
within which parametric excitation is possible are de-
termined. Stationary oscillations on the boundaries
of these ranges are investigated.

1 Introduction: The Simulated
Physical System

Oscillations in various physical systems may differ
greatly in physical nature, but they also have much
in common. It is easier to understand common laws
of oscillation processes if we analyze them in the
most plain and obvious examples; e.g., in mechan-
ical systems that are accessible to direct visual ob-
servation. For this purpose, the simulation experi-
ments described below deal with a familiar mechan-

ical system—the torsion spring oscillator, similar to
the balance device of a mechanical watch.

Left side of Figure 1 shows a schematic image of the
apparatus. It consists of a rigid rod which can rotate
about an axis that passes through its center. Two
identical weights are balanced on the rod. An elastic
spiral spring is attached to the rod. The other end of
the spring is fixed. In the equilibrium position, one
end of the rod points to the zero on a dial. When the
rod is turned about its axis, the spring flexes. The
restoring torque −Dϕ of the spring is proportional
to the angular displacement ϕ of the rotor from the
equilibrium position.

The weights can be shifted simultaneously along
the rod in opposite directions into other symmetrical
positions so that the rotor as a whole remains bal-
anced. However, its moment of inertia J is changed
by such displacements of the weights. When the
weights are shifted toward or away from the axis, the
moment of inertia decreases or increases respectively.
Thus the moment of inertia of the rotor is the pa-
rameter to be modulated in this simulation. As the
moment of inertia J is changed, so also is the natural
frequency ω0 =

√
D/J of the torsional oscillations of

the rotor. Periodic modulation of the moment of iner-
tia can cause, under certain conditions, a progressive
growth of (initially small) natural rotary oscillations
of the rod suspended on the elastic spring.

The simulated physical system may seem artificial
and even exotic. However, it is ideal for the study of
the phenomenon of parametric resonance because it
gives a very clear example of the parametric excita-
tion in a linear mechanical system. All peculiarities
of parametric resonance can be exhaustively inves-
tigated in this case, and its physical properties are
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Figure 1: Schematic image of the torsion spring os-
cillator with a rotor whose moment of inertia is sub-
jected to periodic variations (left), and an analogous
LCR-circuit with a coil whose inductance is modu-
lated (right).

completely explained. A mechanical system is used
for the simulations primarily because its motion is
easily represented on the computer screen, and it is
possible to see directly what is happening. Such visu-
alization makes the simulation experiments very con-
vincing and easy to understand, aiding a great deal
in developing our physical intuition.

Parametric excitation is also possible in an electro-
magnetic analogue of the spring oscillator, e.g., in a
series LCR-circuit containing a capacitor, an inductor
(a coil), and a resistor (right side of Figure 1). Os-
cillating current can be excited by periodic changes
of the capacitance if we periodically move the plates
closer together and farther apart, or by changes of
the inductance of the coil if we periodically move an
iron core in and out of the coil. Such periodic changes
of the inductance are quite similar to the changes of
the moment of inertia in the mechanical system con-
sidered above.

2 General Concepts

According to the conventional classification of oscil-
lations by their method of excitation (see, e.g., [3]),
oscillations are called free or natural when they oc-
cur after some initial action on an isolated system
that is then left to itself. Natural oscillations are
described by a homogeneous differential equation of
motion: all its terms include the desired function x(t)

or its derivatives, and the coefficients of the equation
do not depend on time. Natural oscillations in a real
system gradually decay because of the energy dissi-
pation, and the system eventually comes to rest in
the equilibrium position.

Oscillations are called forced if an oscillator is sub-
jected to an external periodic influence whose effect
on the system can be expressed by a separate term,
a given periodic function of the time, in the differ-
ential equation of motion describing the system. Af-
ter a transient process is over, the forced oscillations
become stationary and acquire the period of the ex-
ternal influence (the steady-state forced oscillations).
When the frequency of the external force is close to
the natural frequency of the oscillator, the amplitude
of steady-state forced oscillations can reach signifi-
cant values. This phenomenon is called resonance.
Resonance is found everywhere in physics, and has
wide and various applications.

Another way to excite non-damping oscillations
consists of a periodic variation of some parameter of
the system to which the motion of the system is sensi-
tive. For example, let a restoring force F = −kx arise
when the system is displaced through some distance
x from the equilibrium position. But in contrast to
the stationary case, the parameter k changes with
time because of some periodic influence: k = k(t). In
the differential equation of motion for such a system,

mẍ = −k(t)x, or
ẍ + ω2(t)x = 0 (ω(t) =

√
k/m), (1)

the coefficient ω2 of x is not constant: it explicitly
depends on time. Similarly, the coefficients in the
differential equation are not constant if the inertial
parameter m depends on time. Oscillations in such
systems are essentially different from both free os-
cillations, which occur when the coefficients in the
homogeneous differential equation of motion are con-
stant, and forced oscillations, which occur when an
additional time-dependent forcing term is added to
the right side of the equation of motion with constant
coefficients.

In the case of periodic changes of the parameter k
or ω, when k(t+T ) = k(t) or ω(t+T ) = ω(t), where
T is the period, the corresponding differential equa-
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tion, Eq. (1), is called Hill’s equation. Oscillations
in a system described by Hill’s equation are called
parametrically excited or simply parametric. When
the amplitude of oscillation caused by the periodic
modulation of some parameter increases steadily, we
describe the phenomenon as parametric resonance.
In parametric resonance, equilibrium becomes unsta-
ble and the system performs oscillations whose am-
plitude progressively increases.

The most familiar example of parametric resonance
is given by swinging of a child on a swing. The swing
can be treated as a physical pendulum whose reduced
length changes periodically as the child squats at
the extreme points, and straightens when the swing
passes through the equilibrium position. However,
the torsion spring oscillator described above is a more
simple (a linear) system and hence better suits for the
initial investigation of the phenomenon of paramet-
ric resonance than the pendulum with a modulated
length because the latter is described by a nonlin-
ear differential equation: The restoring torque of the
force of gravity for the pendulum is proportional to
the sine of the deflection angle.

The causes and characteristics of parametric res-
onance are considerably different from those of the
resonance occurring when the oscillator responds to
a periodic external force. Specifically, the resonant
relationship between the frequency of modulation of
the parameter and the mean natural frequency of os-
cillation of the system is different from the relation-
ship between the driving frequency and the natural
frequency for the usual resonance in forced oscilla-
tions. The strongest parametric oscillations are ex-
cited when the cycle of modulation is repeated twice
during one period of natural oscillations in the sys-
tem, i.e., when the frequency of a parametric modu-
lation is twice the natural frequency of the system. It
is evident that parametric excitation can occur only
if at least weak natural oscillations already exist in
the system. And if there is friction, the amplitude of
modulation of the parameter must exceed a certain
threshold value in order to cause parametric reso-
nance.

Two different cases of the parametric modulation
are considered in the simulation programs of the
software package [1]: a square-wave variation and a

smooth variation of the moment of inertia (specifi-
cally, a sinusoidal motion of the weights along the
rod). In the case of the square-wave modulation,
abrupt, almost instantaneous increments and decre-
ments of the moment of inertia occur sequentially,
separated by equal time intervals. We denote these
intervals by T/2, so that T equals the period of the
variation in the moment of inertia (the period of mod-
ulation).

A change in the moment of inertia can increase or
decrease the angular velocity of the rotor. While the
weights are being moved along the rod, the angular
momentum of the system remains constant since no
torque is needed to produce this displacement. Thus
the resulting reduction in the moment of inertia is ac-
companied by an increment in the angular velocity,
and the rotor acquires additional energy. The greater
the angular velocity, the greater the increment in en-
ergy. This additional energy is supplied by the source
that moves the weights along the rod. On the other
hand, if the weights are instantly moved apart along
the rotating rod, the angular velocity and the en-
ergy of the rotor diminish. The decrease in energy is
transmitted back to the source.

For increments in energy to occur regularly and ex-
ceed the amounts of energy returned—that is, so as a
whole, the modulation of the moment of inertia regu-
larly feeds the oscillator with energy—the period and
phase of modulation must satisfy certain conditions.

For example, suppose that the weights are abruptly
drawn closer to each other at the instant at which the
rotor passes through the equilibrium position, when
its angular velocity is almost maximal. Then they are
moved apart almost at the instant of extreme deflec-
tion, when the angular velocity is nearly zero. The
angular velocity increases in magnitude at the mo-
ment the weights come together, and vice versa. But
since the angular momentum is zero at the moment
the weights move apart, this particular motion causes
no change in the angular velocity or kinetic energy of
the rotor. Thus the square-wave modulation of the
moment of inertia with a period half the mean nat-
ural period of rotary oscillations generates a steady
growth of the amplitude, provided that the phase of
the modulation is chosen in the way described above.

Figure 2 shows the graphs of the angular displace-
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ment and velocity of the rotor (together with the
square-wave graphs of variation of the moment of in-
ertia) for the case in which the weights are drawn
closer to and moved apart from each other twice dur-
ing one mean period of the natural oscillation.

Figure 2: Graphs of the angular displacement and
velocity of the rotor at square-wave modulation of
its moment of inertia in the vicinity of the principal
parametric resonance.

It is evident that the energy of the oscillator is in-
creased efficiently not only when two full cycles of
variation in the parameter occur during one natural
period of oscillation, but also when two cycles occur
during three, five or any odd number of natural pe-
riods. We shall see later that the delivery of energy,
though less efficient, is also possible if two cycles of
modulation occur during an even number of natural
periods (resonances of even orders).

If the changes of a parameter are produced with
the above mentioned periodicity but not abruptly,
the influence of these changes on the oscillator is
qualitatively quite similar, though the efficiency of
the parametric delivery of energy (at the same am-
plitude of the parametric modulation) is maximal
for the square-wave time dependence, because this
form of modulation provides optimal conditions for
the transfer of energy to the oscillating system. The
case of a smooth modulation of some parameter is im-
portant for practical applications of parametric reso-

nance. Figure 3 shows the plots of parametric oscilla-
tions of the torsion pendulum excited by a sinusoidal
motion of the weights along the rod.

Figure 3: Graphs of the angular displacement and
velocity of the rotor at a smooth modulation of its
moment of inertia in conditions of the principal para-
metric resonance.

To provide a growth of energy during a smooth
modulation of the moment of inertia, the motion of
the weights toward the axis of rotation must occur
while the angular velocity of the rotor is on the aver-
age greater in magnitude than it is when the weights
are moved apart to the ends of the rod. Otherwise the
modulation of the moment of inertia aids the damp-
ing of the natural oscillations.

Figure 4 shows the expanding phase trajectories
for the parametric swinging in conditions of the prin-
cipal resonance under the square-wave and smooth
modulation. These phase trajectories correspond to
the time-dependent graphs of increasing oscillations
shown in Figures 2 and 3, respectively.

Parametric excitation is possible only if one of the
energy-storing parameters, D or J (C or L in the
case of LCR-circuit), is modulated. Modulation of
the resistance R (or of the damping constant γ in the
mechanical system) can affect only the character of
the damping of oscillations. It cannot generate an
increase in their amplitude.
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Figure 4: Phase trajectories of parametric oscillations
whose time-dependent graphs are shown in the pre-
ceding figures.

3 Peculiarities of Parametric
Resonance

There are several important differences that distin-
guish parametric resonance from the ordinary reso-
nance caused by an external force acting directly on
the system. The growth of the amplitude and hence
of the energy of oscillations during parametric exci-
tation is provided by the work of forces that periodi-
cally change the parameter. Maximal energy transfer
to the oscillatory system occurs when the parame-
ter is changed twice during one period of the excited
natural oscillations. But the delivery of energy is also
possible when the parameter changes once during one
period, twice during three periods, and so on. That
is, parametric resonance is possible when one of the
following conditions for the frequency ω (or for the
period T ) of modulation is fulfilled:

ω = 2ω0/n, T = nT0/2, (2)

where n = 1, 2, . . . . For a given amplitude of
modulation of the parameter, the higher the order
n of parametric resonance, the less (in general) the
amount of energy delivered to the oscillating system
during one period.

One of the most interesting characteristics of para-
metric resonance is the possibility of exciting increas-
ing oscillations not only at the frequencies ωn given
in Eq. (2), but also in intervals of frequencies ly-
ing on either side of the values ωn (in the ranges
of instability.) These intervals become wider as the
range of parametric variation is extended, that is, as

the depth of modulation is increased. The dimen-
sionless depth of modulation is defined, in the case
of the rotor, as the relative difference in the max-
imal and minimal values of its moment of inertia:
m = (Jmax − Jmin)/(Jmax + Jmin), and in the ana-
logues circuit, as the fractional difference in the in-
ductance of the coil.

An important distinction between parametric exci-
tation and forced oscillations is related to the depen-
dence of the growth of energy on the energy already
stored in the system. While for forced excitation the
increment of energy during one period is proportional
to the amplitude of oscillations, i.e., to the square
root of the energy, at parametric resonance the incre-
ment of energy is proportional to the energy stored
in the system.

Energy losses caused by friction (unavoidable in
any real system) are also proportional to the energy
already stored. In the case of direct forced excitation,
an arbitrarily small external force gives rise to reso-
nance. However, energy losses restrict the growth of
the amplitude because these losses grow with the en-
ergy faster than does the investment of energy arising
from the work done by the external force.

In the case of parametric resonance, both the in-
vestment of energy caused by the modulation of a
parameter and the frictional losses are proportional
to the energy stored (to the square of the ampli-
tude), and so their ratio does not depend on the am-
plitude. Therefore, parametric resonance is possible
only when a threshold is exceeded, that is, when the
increment of energy during a period (caused by the
parametric variation) is larger than the amount of en-
ergy dissipated during the same time. To satisfy this
requirement, the range of the parametric variation
(the depth of modulation) must exceed some critical
value. This threshold value of the depth of modula-
tion depends on friction. However, if the threshold
is exceeded, the frictional losses of energy cannot re-
strict the growth of the amplitude. In a linear system
the amplitude of parametrically excited oscillations
must grow indefinitely.

In a nonlinear system the natural period depends
on the amplitude of oscillations. If conditions for
parametric resonance are fulfilled at small oscillations
and the amplitude begins to grow, the conditions of

5



resonance become violated at large amplitudes. In
a real system the growth of the amplitude over the
threshold is restricted by nonlinear effects.

4 The Threshold of Parametric
Excitation

We can use arguments employing the conservation
of energy to evaluate the modulation depth which
corresponds to the threshold of parametric excitation.
For the case of square-wave modulation, let us first
find the increment of the rotor kinetic energy which
occurs during an abrupt shift of the weights toward
the axis, when the moment of inertia decreases from
the value J1 = J0(1+m) to the value J2 = J0(1−m).
During abrupt radial displacements of the weights
along the rod, the angular momentum L = Jϕ̇ of the
rotor is conserved: J1ϕ̇1 = J2ϕ̇2, whence for the ratio
of the angular velocities before and after the change
of the moment of inertia we get ϕ̇2/ϕ̇1 = J1/J2 =
(1+m)/(1−m). It is convenient to use the expression
Ekin = Jϕ̇2/2 = Lϕ̇/2, which gives the kinetic energy
of the rotor in terms of L and ϕ̇. For the increment
∆E of the kinetic energy we can write:

∆E =
1
2
L(ϕ̇2 − ϕ̇1) =

1
2
Lϕ̇1

(
ϕ̇2

ϕ̇1
− 1

)
=

2m

1−m
Ekin ≈ 2mEkin (for m ¿ 1). (3)

If the event occurs near the equilibrium position of
the rotor, when the total energy E of the pendulum
is approximately its kinetic energy Ekin, we see from
Eq. (3) that the fractional increment of the total en-
ergy ∆E/E approximately equals twice the value of
the modulation depth m: ∆E/E ≈ 2m.

When the frequencies and phases have those val-
ues which are favorable for the most effective delivery
of energy, the abrupt displacement of the weights to-
ward the ends of the rod occurs at the instant when
the rotor attains its greatest deflection (or is very
near it). At this instant the angular velocity and ki-
netic energy of the rotor are almost zero, and so this
radial displacement of the weights into their previous
positions causes no decrement of the energy.

For the principal resonance (n = 1) the investment
of energy occurs twice during the natural period T0

of oscillations. That is, the relative increment of en-
ergy ∆E/E during one period approximately equals
4m. A process in which the increment of energy ∆E
during a period is proportional to the energy stored
E (∆E ≈ 4mE) is characterized by the exponential
growth of the energy in time:

E(t) = E0 exp(αt). (4)
In this case the index of growth α is proportional to

the depth of modulation m of the moment of inertia:
α = 4m/T0. When the modulation is exactly tuned
to the principal resonance (T = T0/2), the decrease
of energy is caused only by friction. Dissipation of en-
ergy due to viscous friction during an integral number
of cycles is described by the following expression:

E(t) = E0 exp(−2γt). (5)
where the damping constant γ equals the inverse time
τ of fading of natural oscillations: γ = 1/τ . Equa-
tion (5) yields the relative decrease of energy ∆E/E
during a time interval t containing an integral num-
ber of natural periods: ∆E/E ≈ −2γt. Equating the
relative increment 4m of energy during one period
(caused by the square-wave parameter modulation)
to the relative energy losses due to friction 2γT0, we
obtain the following estimate for the threshold (min-
imal) value mmin of the depth of modulation corre-
sponding to the excitation of the principal parametric
resonance:

mmin = γT0/2 = π/(2Q). (6)

Here we introduced the dimensionless quality factor
Q = πτ/T0 = ω0/(2γ) to characterize friction in the
system. The parametric oscillations occurring at the
threshold conditions, Eq. (6), have a constant ampli-
tude in spite of the dissipation of energy. This mode
of steady oscillations is called parametric regenera-
tion. The stationary character of such oscillations
is possible because on the average frictional losses of
the energy are compensated for by the energy de-
livery from the source that makes the weights move
along the rod. The mode of parametric regeneration
is stable with respect to small variations in the initial
conditions. However, the oscillations become fading
or increasing indefinitely if we change slightly either
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the depth or the period of modulation or the quality
factor.

For resonance of the third order (for which T =
3T0/2) the threshold value of the depth of modulation
is approximately three times greater than its value
for the principal resonance: mmin = 3π/(2Q). In
this resonance two cycles of the parametric variation
occur during three full periods of natural oscillations.
Radial displacements of the weights again happen at
favorable moments, and so almost the same invest-
ment of energy occurs during an interval that is three
times longer than the interval for the principal reso-
nance.

When the depth of modulation exceeds the thresh-
old value, the (averaged over the period) energy of os-
cillations increases exponentially in time. The growth
of the energy again is described by Eq. (4). How-
ever, now the index of growth α is determined by the
amount by which the energy delivered through para-
metric modulation exceeds the simultaneous losses of
energy caused by friction: α = 4m/T0 − 2γ. The en-
ergy of oscillations is proportional to the square of the
amplitude. Therefore the amplitude of parametri-
cally excited oscillations also increases exponentially
in time (see Figure 2): a(t) = a0 exp(βt) with the in-
dex β = α/2 (one half the index α of the growth in en-
ergy). For the principal resonance, when the invest-
ment of energy occurs twice during one natural period
of oscillation, we have β = 2m/T0 − γ = mω0/π − γ.

In the case of the parametric growth of oscillations,
energy is transmitted to the rotor by the source that
makes the weights move periodically along the rod.
To find the threshold of parametric excitation by a
smooth (e.g., sinusoidal) motion of the weights along
the rod, in contrast to the case of abrupt displace-
ments, we cannot use the conservation of the angular
momentum. Instead we should calculate the work
done by the source during one period of oscillation
and find those conditions under which this work is
positive and exceeds the energy losses caused by fric-
tion.

In the adopted model of the system we let the
forced motion of the weights along the rod be ex-
actly sinusoidal, i.e., their distance l from the axis of
rotation is

l(t) = l0(1 + m̃ sin ωt). (7)

Here l0 is the mean distance of the weights from the
axis of rotation, and m̃ is the dimensionless amplitude
of their harmonic motion along the rod (m̃ < 1). We
note that m̃ is the modulation depth of the distance
l(t), while the modulation depth m of the moment of
inertia J(t) is approximately twice as great (m ≈ 2m̃
if m ¿ 1), because the moment of inertia is propor-
tional to the square of the distance of the weights
from the axis of rotation.

The calculation of the threshold of parametric res-
onance for the case of the sinusoidal motion of the
weights is somewhat more complicated than for the
square-wave modulation considered above. Details of
the calculation can be found in [1], pp. 133–135.

For m̃ ¿ 1, the moment of inertia is modulated
nearly harmonically with the depth m ≈ 2m̃. For
this case we can find an approximate value for the
depth of modulation of the moment of inertia at
the threshold: m = 2/Q. This value is somewhat
greater than m = π/(2Q) given by Eq. (6) for the
case of square-wave modulation, in agreement with
the already mentioned qualitative conclusion that the
square-wave modulation provides more favorable con-
ditions for the transfer of energy to the oscillator from
the source that moves the weights along the rod.

5 The Frequency Intervals of
Parametric Excitation

The threshold for the parametric excitation of the
torsion pendulum is determined above for the reso-
nant situations in which two cycles of the parametric
modulation occur during one natural period of oscil-
lation (or during three natural periods for resonance
of the third order). The estimate obtained, Eq. (6),
is valid for small values of m.

For large values of the modulation depth m, the
natural period needs a more precise definition. Let
T0 = 2π/ω0 = 2π

√
J0/D be the period of oscil-

lation of the rotor when the weights are fixed at
some middle positions which correspond to a mean
value of the moment of inertia J0 = 1

2 (Jmax + Jmin).
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The period is somewhat longer when the weights
are moved further apart: It has the value T1 =
T0

√
1 + m ≈ T0(1 + m/2). The period is shorter

when the weights are moved closer to one another:
T2 = T0

√
1−m ≈ T0(1−m/2).

It is convenient to define the average period Tav

not as the arithmetic mean 1
2 (T1 + T2), but rather as

the period that corresponds to the arithmetic mean
frequency ωav = 1

2 (ω1 + ω2), where ω1 = 2π/T1 and
ω2 = 2π/T2. So we define Tav by the relation:

Tav =
2π

ωav
=

2T1T2

(T1 + T2)
. (8)

The period T of the parametric modulation which
is exactly tuned to any of the parametric resonances
is determined not only by the order n of this reso-
nance, but also by the depth of modulation m. In or-
der to satisfy the resonant conditions, the increment
in the phase of natural oscillations during one cycle
of modulation must be equal to π, 2π, 3π, . . . , nπ,
. . . During the first half-cycle the phase increases by
ω1T/2, during the second half-cycle—by ω2T/2, and
instead of the approximate condition of resonance,
Eq. (2), we obtain:

ω1 + ω2

2
T = nπ, T = n

π

ωav
= n

Tav

2
. (9)

Thus, for a parametric resonance of some definite
order n, the condition for exact tuning can be ex-
pressed in terms of the harmonic mean period Tav

of the two natural periods, T1 and T2, defined by
Eq. (8). This simple condition is Tn = nTav/2.

For moderate values of m it is possible to use ap-
proximate expressions for the average frequency and
the corresponding period:

ωav ≈ ω0(1 +
3
8
m2), Tav ≈ T0(1− 3

8
m2).

The difference between Tav and T0 reveals itself
in terms proportional to the square of the depth of
modulation m.

An infinite growth of the amplitude during para-
metric excitation in this linear system is possible not
only at exact tuning to one of resonances but also
in certain intervals of T -values. These intervals, or
the ranges of instability, surround the resonant values
T = Tav/2, T = Tav, T = 3Tav/2, . . . Generally, the

width of the intervals increases with the depth m of
the parameter modulation. Outside the intervals the
equilibrium position of a torsion pendulum is stable,
and the amplitude of oscillations does not grow.

In order to determine the boundaries of the fre-
quency ranges of parametric instability, we can con-
sider stationary oscillations of a constant amplitude
that occur when the period of modulation T corre-
sponds to one of the boundaries.

Figure 5: Stationary parametric oscillations at the
lower boundary of the principal interval of instability
(near T = Tav/2).

For the square-wave modulation these stationary
oscillations can be represented as an alternation of
free oscillations with the periods T1 and T2, occur-
ring during the intervals of constancy of the moment
of inertia. The graphs of such oscillations are formed
by joined segments of sine curves symmetrically trun-
cated on both sides in the absence of friction, and by
segments of damped sine curves of natural oscilla-
tions otherwise (see Figure 5, whose upper part cor-
responds to an idealized frictionless system). Periods
T1 and T2 of these sine functions on adjacent intervals
differ in accordance with the instantaneous values of
the moment of inertia. For the periodic oscillations
occurring at the lower boundary of the principal res-
onance the period T of parametric variation is a little
shorter than the resonant value Tav/2, i.e., a little less
than a quarter of the mean natural period Tav elapses
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between consecutive abrupt increases and decreases
of the moment of inertia. Similar phase diagrams
and time-dependent graphs of stationary oscillations
occurring at the upper boundary of this interval are
shown in Figure 6. Here a little more than quarter
of Tav elapses between the changes of the moment of
inertia.

Figure 6: Stationary parametric oscillations at the
upper boundary of the principal interval of instability
(near T = Tav/2).

The closed phase diagrams and graphs of the angu-
lar velocity ϕ̇(t) for such periodic stationary processes
have the characteristic patterns shown in Figures 5
and 6. In the absence of friction the abrupt incre-
ments of the velocity occurring twice during a period
are equal in a stationary process to the decrements
caused by the modulation of the moment of inertia,
because otherwise the oscillations will either damp
or grow. With friction, stationary oscillations occur
only if the increments are greater than decrements in
order to compensate for the energy losses caused by
friction.

To find conditions at which such stationary oscil-
lations take place, we can write the expressions for
ϕ(t) and ϕ̇(t) for the adjacent time intervals dur-
ing which the oscillator executes natural oscillations,
and then fit these expressions to one another at the
boundaries. Such fitting must provide a periodic sta-
tionary process. It is convenient to represent the

motion on one interval during which the moment
of inertia is J1 = J0(1 + m) as a superposition of
sine and cosine (damped) waves of the frequency
ω1 = ω0/

√
1−m whose amplitudes are A1 and B1,

and similarly for the adjacent interval during which
J = J2 = J0(1−m):

ϕ1(t) = (A1 sin ω1t + B1 cosω1t)e−γt,

ϕ2(t) = (A2 sin ω2t + B2 sin ω2t)e−γt. (10)

To determine the values of constants A1, B1 and
A2, B2, we can use the conditions that must be
satisfied when the segments of the ϕ(t) graph are
joined together, namely, the continuity of ϕ(t) and
the jump of ϕ̇(t) determined by the ratio J2/J1 =
(1 − m)/(1 + m). The two other conditions we get
from the requirement of the periodicity of the station-
ary process. The homogeneous system of equations
for A1, B1, A2, B2 which we thus obtain has a non-
trivial (non-zero) solution only if its determinant is
zero. This condition for the existence of a non-zero
solution yields an equation for the unknown variable
T , the period of modulation, which appears in coef-
ficients of the system of equations for A1, B1, A2,
B2 through the time t at which the graphs (10) are
joined. Solving this equation for T , we can find the
desired lower and upper boundaries, T− and T+, for
the interval of parametric resonance as the roots of
the equation.

The equation for T is derived in [1] (pp. 110–114)
for an idealized frictionless system, and an approx-
imate equation valid for the system with relatively
weak viscous friction is obtained in [2] (pp. 73–76).
The equation is transcendental (the variable T enters
it as the arguments of sine and cosine functions) and
cannot be solved analytically. In the simulation pro-
gram [1] the equation for T is solved numerically by
iteration, and the boundaries of the intervals of para-
metric resonance for arbitrary values of the depth of
modulation m and the quality factor Q are displayed
in the panel “Properties.”

The intervals of instability that surround the first
five parametric resonances are shown in the diagram
(Figure 7) as functions of the depth m of the square-
wave modulation. The central line of each “tongue”
of the diagram shows the period T = nTav/2 that
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Figure 7: Intervals of parametric excitation at the
square-wave modulation of the moment of inertia in
the absence of friction.

corresponds to exact tuning to n-order resonance.
We note that for small values of m the intervals

surrounding resonances of even orders (n = 2, 4) are
very narrow compared to odd resonances (n = 1, 3,
5). To understand why resonances of even orders
are so weak and narrow, we should take into account
that the abrupt changes of the moment of inertia for,
say, n = 2 resonance induce both an increase and
a decrease of the angular velocity only once during
each natural period. The oscillations grow only if
the increment of the velocity at the instant when the
weights are drawn closer is greater than the decre-
ment occurring when the weights are drawn apart.
This is possible only if the weights are shifted to-
ward the axis when the angular velocity of the ro-
tor is greater in magnitude than it is when they are
shifted apart. Such conditions are easily fulfilled for
odd resonances because the weights are shifted apart
at extreme points where the velocity is zero. For
T ≈ Tav, the mentioned conditions for the growth of
oscillations can fulfill only because there is a (small)
difference between the natural periods T1 and T2 of
the rotor, where T1 is the period with the weights
shifted apart and T2 is the period with them shifted
together. This difference is proportional to the depth
of modulation m and vanishes when m tends to zero.
The growth of oscillations at parametric resonance of
the second order is shown in Figure 8.

For small values of the depth of modulation m, it
is possible to obtain approximate analytical expres-

Figure 8: The phase trajectory and the graph of the
angular velocity of oscillations corresponding to para-
metric resonance of the second order (T = Tav).

sions for the boundaries of the intervals of parametric
resonance. For the principal resonance (n = 1) in the
absence of friction:

T∓ =
1
2

(
1∓ m

π

)
Tav, (11)

(see [1], p. 115). We see from Eq. (11) that the width
of the main interval ∆T is proportional to the first
power of m: ∆T = T+ − T− = m/π. In the presence
of viscous friction:

T∓ =
1
2

(
1∓ 1

π

√
m2 −m2

min

)
Tav, (12)

where mmin = π/(2Q) is the threshold (minimal)
value of the depth of modulation (see [2], p. 77). For
the threshold conditions m = mmin, and both bound-
aries of the interval merge. That is, the interval dis-
appears.

Similar approximate expressions are valid for n =
3 resonance: In Eqs. (11)–(12) we should replace 1

2
with 3

2 , and for the threshold depth of modulation
mmin use the value mmin = 3π/(2Q) corresponding
to n = 3.

For resonance of the second order (n = 2) in the
absence of friction the boundaries are:

T∓ = (1∓m2/4)Tav (13)

(see [1], p. 119). In the presence of viscous friction
the interval shrinks:

T∓ =
(

1∓ 1
4

√
m4 −m4

min

)
Tav, (14)
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where mmin =
√

2/Q is the threshold value of the
depth of modulation for this resonance (see [2], p. 85).
In this case, the investment of energy during a period
is proportional to the square of the depth of modu-
lation m, while in the cases of resonances with n = 1
and n = 3 the investment of energy is proportional
to the first power of m. Therefore, for the same value
of the damping constant γ (the same quality factor
Q), a greater depth of modulation m is required here
to exceed the threshold of parametric excitation.

The interval of instability in the vicinity of res-
onance with n = 2 is considerably narrower com-
pared to the corresponding intervals of resonances
with n = 1 and n = 3. According to Eq. (13), the
width ∆T = 1

2m2Tav of this resonance in the absence
of friction is also proportional only to the square of
m (for m ¿ 1), in contrast to odd resonances, for
which ∆T is proportional to the first power of m.

The diagram in Figure 7 shows that with the
growth of the depth of modulation m the even in-
tervals expand and become comparable with the in-
tervals of odd orders. We see that for some certain
values of m both boundaries of intervals with n > 2
coincide (we may consider that they intersect). Thus
at these values of m the corresponding intervals of
parametric resonance disappear. These values of m
correspond to the natural periods T1 and T2 of os-
cillation (associated with the weights far apart and
close to each other), whose ratio is 2:1, 3:1, and 3:2.
For the corresponding values of the modulation depth
m and the period of modulation T , oscillations are
steady for arbitrary initial conditions.

When there is friction in the system, the intervals
of the period of modulation become narrower, and
for strong enough friction (below the threshold) the
intervals disappear. The diagram in Figure 9 shows
the boundaries of the first three intervals of paramet-
ric resonance in the absence of friction, for Q = 20,
and for Q = 10. Note the “island” of parametric
resonance for n = 3 and Q = 20. This resonance dis-
appears when the depth of modulation exceeds 45%
and reappears when m exceeds approximately 66%.

For any given value m of the depth of modulation,
only several first intervals (if any) of parametric res-
onance can exist, for which m exceeds the threshold.

Figure 9: Intervals of parametric excitation at
square-wave modulation of the moment of inertia in
the absence of friction, and at weak friction (for Q =
20 and Q = 10).

6 A Smooth Modulation of the
Moment of Inertia

In the investigation of smooth modulation we should
rely on the differential equation rather than on the
method of joining solutions for adjacent intervals that
we used for square-wave modulation.

For simplicity we consider the rod itself to be very
light, so that the moment of inertia J of the rotor
is due principally to the weights: J = 2Ml2(t). The
angular momentum Jϕ̇(t) changes in time according
to the equation:

d

dt
(Jϕ̇) = −Dϕ, (15)

where −Dϕ is the restoring torque of the spring.
Substituting into Eq. (15) l(t) from Eq. (7) and tak-
ing into account the expression ω2

0 = D/J0 (where
J0 = 2Ml20 is the moment of inertia of the rod with
the weights in their mean positions), we obtain fi-
nally:

d

dt

[
(1 + m̃ sin ωt)2ϕ̇

]
= −ω2

0ϕ− 2γϕ̇. (16)

We have added the drag torque of viscous friction
to the right-hand side of Eq. (16). This equation is
solved numerically in the computer program [1] dur-
ing the simulation of oscillations at sinusoidal motion
of the weights.
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In order to obtain an approximate solution that
is valid up to terms of the first order in the small
parameter m̃, we can, instead of the exact differen-
tial equation of motion, Eq. (16), solve the following
approximate equation:

ϕ̈ + 2γϕ̇ + ω2
0(1− 2m̃ sin ωt)ϕ = 0. (17)

Equation (17) is a special case of Hill’s equation,
Eq. (1), with sinusoidal time dependence of the pa-
rameter. It is called Mathieu’s equation. The the-
ory of Mathieu’s equation has been fully developed,
and all significant properties of its solutions are well
known. A complete mathematical analysis of its solu-
tions is rather complicated and is usually restricted to
the determination of the frequency intervals in which
the state of rest in the equilibrium position becomes
unstable: at arbitrarily small deviations the ampli-
tude of incipient small oscillations begins to increase
progressively in time. The boundaries of these inter-
vals of instability depend on the depth of modulation
2m̃. It is worth mentioning that even inside the in-
tervals (when conditions for parametric resonance are
satisfied) if ϕ and ϕ̇ are exactly zero simultaneously,
they remain zero. This property contrasts with the
usual case of resonance in which the system is acted
upon by an external force: In forced oscillations the
amplitude begins to grow even from the state of rest
in the equilibrium position.

We note that the application of the theory of Math-
ieu’s equation to the simulated system is restricted to
the linear order in m̃. For finite values of the depth
of modulation m̃, the resonant frequencies and the
boundaries of the intervals of instability for the sim-
ulated system differ from those predicted by Math-
ieu’s equation. An approximate analytical solution
to the exact differential equation of motion, Eq. (16),
valid up to the terms of the second order in m̃ for the
main resonance and resonance of the second order,
is obtained in [1] (and [2]) by the method described
in [4]. In particular, for the main resonance this so-
lution gives the threshold condition which coincides
with the cited above (see p. 7) condition mmin = 2/Q
(where m ≈ 2m̃), obtained from considerations based
on the conservation of energy. For the second reso-
nance this approximate solution gives the following
threshold condition:

m̃min = 2/
√

Q, Qmin = 4/m̃2. (18)

We see that the threshold for the second parametric
resonance in the case of the smooth modulation is
also somewhat greater than in the case of square-wave
modulation (see p. 11): compare the expression for
mmin given by Eq. (18) with mmin =

√
2/Q (where

m ≈ 2m̃).
The simulation program in [1] allows us to study

parametric oscillations and obtain graphs of the vari-
ables for arbitrarily large values of the depth of mod-
ulation m̃.

Figure 10: Stationary parametric oscillations at the
upper boundary of the principal interval in the case
of sinusoidal modulation.

An example of steady oscillations occurring at the
upper boundary of the principal instability interval
(the frequency of modulation ω ≈ 2ω0) is shown in
Figure 10. Its upper part corresponds to an ideal-
ized frictionless system. We note the deviation of
the shape of the plots from a sine curve caused by
the contribution of higher harmonics (mainly of the
third harmonic with the frequency 3ω/2).

It is interesting to compare these graphs of sta-
tionary parametric oscillations in the case of smooth
modulation of the moment of inertia (Figure 10) with
the corresponding graphs in the case of square-wave
modulation (Figure 6).
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Figure 11: The phase trajectory and the plots of sta-
tionary oscillations at the threshold of the third para-
metric resonance

In the case of a smooth modulation of the moment
of inertia, parametric resonance of the third order is
weaker and narrower than that of the second order (in
contrast to the case of square-wave modulation, for
which at m ¿ 1 the third-order resonance is stronger
and wider than the second-order resonance). This
third-order interval disappears in the presence of very
small friction. Stationary oscillations at the threshold
of parametric resonance of the third order are shown
in Figure 11.

Summary

We discussed here a theoretical approach to the phe-
nomenon of parametric resonance in a linear mechan-
ical oscillator supported by its computerized exper-
imental investigation on simple mathematical mod-
els of real physical systems. This investigation is
based on simulations included in the software pack-
age PHYSICS OF OSCILLATIONS [1]. The package
offers many interesting pre-defined examples that il-
lustrate by computer simulations various properties
and peculiarities of parametric resonance, thus allow-
ing the student to appreciate the beauty of oscillatory
phenomena.

The programs of the package are rather simple and
at the same time flexible and sophisticated enough in
order to use them, say, in advanced research projects
of the more inquisitive students for exploration of new
properties. Visualization of motion simultaneously
with plotting the graphs of different variables and
phase trajectories makes the simulation experiments

very convincing and comprehensible. These simula-
tions help greatly in developing our physical intuition
and provide a good background for the study of more
complicated nonlinear parametric systems like a pen-
dulum whose length is forced to periodically change,
or a rigid pendulum whose suspension point is driven
periodically in the vertical direction [5].
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