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Abstract

Parametric excitation of a rigid planar pendulum caused by a square-wave modulation of its
length is investigated both analytically and with the help of computer simulations. The threshold
and other characteristics of parametric resonance are found and discussed in detail. The role
of nonlinear properties of the pendulum in restricting the resonant swinging is emphasized.
The boundaries of parametric instability ranges are determined as functions of the modulation
depth and the quality factor. Stationary oscillations at these boundaries and at the threshold
conditions are investigated. The feedback providing active optimal control of pumping and
damping is analyzed. Phase locking between the drive and the pendulum at large amplitudes
and the phenomenon of parametric autoresonance are discussed.

Keywords: parametric resonance, optimal control, phase locking, autoresonance, bifurcations,
instability ranges

1. Introduction: the investigated physical system

Periodic excitation of a physical system is called parametric forcing if it is realized by vari-
ation of some parameter that characterizes the system. In particular, a pendulum can be excited
parametrically by a given vertical motion of its suspension point. In the frame of reference
associated with the pivot, such forcing of the pendulum is equivalent to periodic modulation
of the gravitational field. This apparently simple physical system exhibits a surprisingly vast
variety of possible regular and chaotic motions. Hundreds of texts and papers are devoted to
investigation of the pendulum with vertically oscillating pivot: see, for example, Refs. [1], [2]
and references therein. A widely known curiosity in the behavior of an ordinary rigid planar
pendulum whose pivot is forced to oscillate along the vertical line is the dynamic stabilization of
its inverted position, occurring when the driving amplitude and frequency lie in certain intervals
(see, for example, Refs. [2] – [5]).

Another familiar method of parametric excitation which we explore in this paper consists
of a periodic variation of the length of the pendulum. In many textbooks and papers (see, for
example, Refs. [6] – [10]) such a system is considered as a simple model of a playground
swing. Indeed, the swing can be treated as a physical pendulum whose effective length changes
periodically as the child squats at the extreme points, and straightens each time the swing passes
through the equilibrium position. It is easy to illustrate this phenomenon of the swing pumping
by the following simple experiment. Let a thread with a bob hanging on its end pass through a
little ring fixed in a support. You can pull by some small distance the other end of the thread that
you are holding in your hand each time the swinging bob passes through the middle position,
and release the thread to its previous length each time the bob reaches its extreme positions.
These periodic variations of the pendulum’s length with the frequency twice the frequency of
natural oscillation cause the amplitude to increase progressively.

A fascinating description of an exotic example illustrating this mode of parametric excitation
can be found in Ref. [11], p. 27. In Spain, in the cathedral of a northern town Santiago de
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Compostela, there is a famous O Botafumeiro, a very large incense burner suspended by a long
rope, which can swing through a huge arc. The censer is pumped by periodically shortening
and lengthening the rope as it is wound up and then down around the rollers supported high
above the floor of the nave. The pumping action is carried out by a squad of priests, called
tiraboleiros or ball swingers, each holding a rope that is a strand of the main rope that goes from
the pendulum to the rollers and back down to near the floor. The tiraboleiros periodically pull
on their respective ropes in response to orders from the chief verger of the cathedral. One of the
more terrifying aspects of the pendulum’s motion is the fact that the amplitude of its swing is
very large, and it passes through the bottom of its arc with a high velocity, spewing smoke and
flames.

In this paper we consider a pendulum with modulated length that can swing in the vertical
plane in the uniform gravitational field. To allow arbitrarily large swinging and even full revolu-
tions, we assume that the pendulum consists of a rigid massless rod (rather than a flexible string)
with a massive small bob on its end. The effective length of the pendulum can be changed by
shifting the bob along this rod. Periodic modulation of the effective length by such mass re-
distribution can cause, under certain conditions, a growth of initially small natural oscillations.
This phenomenon is called parametric resonance.

2. The square-wave modulation of the pendulum length

In this paper we are concerned with a periodic square-wave (piecewise constant) modula-
tion of the pendulum length. The square-wave modulation provides an alternative and may be
more straightforward way to understand the underlying physics and to describe quantitatively
the phenomenon of parametric resonance in comparison with a smooth (e.g., sinusoidal) mod-
ulation of the pendulum length [6] – [10]. A computer program [12] developed by the author
simulates such a physical system and aids greatly in investigating the phenomenon.

In the case of the square-wave modulation, abrupt, almost instantaneous increments and
decrements in the length of the pendulum occur sequentially, separated by equal time intervals.
We denote these intervals by T/2, so that T equals the period of the length variation (the period
of modulation). It is easy to understand how the square-wave modulation can produce consid-
erable oscillation of the pendulum if the period and phase of modulation are chosen properly.

For example, suppose that the bob is shifted up (toward the axis) at an instant at which the
pendulum passes through the lower equilibrium position, when its angular velocity reaches a
maximum value. While the weight is moved radially, the angular momentum of the pendulum
with respect to the pivot remains constant. Thus the resulting reduction in the moment of
inertia is accompanied by an increment in the angular velocity, and the pendulum gets additional
energy. The greater the angular velocity, the greater the increment in energy. This additional
energy is supplied by the source that moves the bob along the rod.

On the other hand, if the bob is instantly moved down along the rod of the swinging pen-
dulum, the angular velocity and the energy of the pendulum diminish. The decrease in energy
is transferred back to the source. In order that increments in energy occur regularly and exceed
the amounts of energy returned, i.e., in order that, as a whole, the modulation of the length reg-
ularly feeds the pendulum with energy, the period and phase of modulation must satisfy certain
conditions.

In particular, the greatest growth of the amplitude occurs if effective length of the pendulum
is reduced each time the pendulum crosses the equilibrium position, and is increased back at
greatest elongations, when the angular velocity is almost zero. Therefore this radial displace-
ment of the bob into its former position causes nearly no decrement in the kinetic energy. The
resonant growth of the amplitude occurs if two cycles of modulation are executed during one
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period of natural oscillations. This is the principal parametric resonance. The time history of
such oscillations for the case of a very weak friction (Q = 1500) is shown in Fig. 1 together
with the square-wave variation of the pendulum length.
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Figure 1: Initial exponential growth of the amplitude of oscillations at parametric resonance of the first order
(n = 1) under the square-wave modulation, followed by beats.

In a real system the growth of the amplitude at parametric resonance is restricted by nonlin-
ear effects. In a nonlinear system like the pendulum, the natural period depends on the amplitude
of oscillations. As the amplitude grows, the natural period of the pendulum becomes longer.
However, in the accepted model the drive period (period of modulation) remains constant. If
conditions for parametric excitation are fulfilled at small oscillations and the amplitude is grow-
ing, the conditions of resonance become violated at large amplitudes — the drive slips out of
resonance. The drive will then drift out of phase with the pendulum. The phase relationships
between the modulation and oscillations of the pendulum change gradually to those favorable
for the backward transfer of energy from the pendulum to the source of modulation. This causes
gradual reduction of the amplitude. The natural period becomes shorter, and conditions for the
growth of the amplitude restore. Oscillations of the pendulum acquire the character of beats, as
shown in Fig. 1. Due to friction these transient beats gradually fade, and the amplitude tends to
a finite constant value.

Details of the process of resonant growth followed by a nonlinear restriction of the amplitude
for parametrically excited pendulum (T = T0/2) with considerable values of the modulation
depth and friction (ml =15%, Q = 5.0) are shown in Fig. 2. The vertical segments of the phase
trajectory and of the φ̇(t) graph correspond to instantaneous increments and decrements of the
angular velocity φ̇ at the instants at which the bob is shifted up and down respectively. The
curved portions of the phase trajectory that spiral in toward the origin correspond to damped
natural motions of the pendulum between the jumps of the bob. The initially fast growth of
the amplitude (described by the expanding part of the phase trajectory) gradually slows down,
because the natural period becomes longer. After reaching the maximum value of 78.3◦, the
amplitude alternatively decreases and increases within a small range approaching slowly its
final value of about 74◦. The initially unwinding spiral of the phase trajectory simultaneously
approaches the closed limit cycle, whose characteristic shape can be seen in the left part of
Fig. 2.

It is evident that the energy of the pendulum is increased not only when two full cycles of
variation in the parameter occur during one natural period of oscillation, but also when two
cycles occur during three, five or any odd number of natural periods (resonances of odd orders).
We shall see later that the delivery of energy, though less efficient, is also possible if two cycles
of modulation occur during an even number of natural periods (resonances of even orders).
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Figure 2: The phase diagram (φ − φ̇ plane, left) and time-dependent graphs (right) of angular velocity φ̇(t) and
angle φ(t) for the process of resonant growth followed by nonlinear restriction of the amplitude. The square-wave
modulation of the pendulum length is also shown (up and down positions of the pendulum bob).

3. The threshold of parametric excitation

There are several important differences that distinguish parametric resonance from the or-
dinary resonance caused by an external force exerted directly on the system. Variations of the
length cannot take a resting pendulum out of equilibrium: in contrast to the direct forcing, para-
metric excitation can occur only if (even small) natural oscillations already exist. Parametric
resonance is possible when one of the following conditions for the frequency ω (or for the period
T ) of a parameter modulation is fulfilled:

ω = ωn =
2ω0

n
, T = Tn =

nT0

2
, n = 1, 2, . . . (1)

Parametric resonance is possible not only at the frequencies ωn given in Eq. (1), but also in
ranges of frequencies ω lying on either side of the values ωn (in the ranges of instability). These
intervals become wider as the depth of modulation is increased.

An important distinction between parametric excitation and forced oscillations is related
to the dependence of the growth of energy on the energy already stored in the system. While
for a direct forced excitation the increment in energy during one period is proportional to the
amplitude of oscillations, i.e., to the square root of the energy, at parametric resonance the
increment in energy is proportional to the energy itself, stored in the system.

Energy losses caused by friction are also proportional to the energy already stored. In the
case of direct forced excitation, energy losses restrict the growth of the amplitude because these
losses grow with the energy faster than does the investment in energy arising from the work
done by the external force. In the case of parametric resonance, both the investment in energy
caused by the modulation of a parameter and the frictional losses are proportional to the energy
stored, and so their ratio does not depend on the amplitude. Therefore, parametric resonance
is possible only when a threshold is exceeded, that is, when the increment in energy during a
period (caused by the parameter variation) is larger than the amount of energy dissipated during
the same time. The critical (threshold) value of the modulation depth depends on friction.
However, if the threshold is exceeded, the frictional losses of energy cannot restrict the growth
of the amplitude. With friction, stationary oscillations of a finite amplitude eventually establish
due to nonlinear properties of the pendulum.
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We can use arguments employing the conservation laws to evaluate the modulation depth
which corresponds to the threshold of the principal parametric resonance. Let the changes in
the length l of the pendulum occur between l1 = l0(1 + ml) and l2 = l0(1 − ml), where ml

is the dimensionless depth of modulation (or modulation index). To calculate the change in
total energy of the pendulum during a period, we should not worry about the potential energy.
Indeed, after a period the pendulum occurs again in the vertical position with the bob at the
same height, hence after a period its potential energy is the same. Thus we should calculate
only the change in kinetic energy.

Next we calculate the fractional increment in energy ∆E/E during one cycle of modula-
tion, namely, between two consecutive passages through the equilibrium position in opposite
directions. At the first passage, the energy E1 equals v21/2 per unit mass of the bob, where v1
is the bob’s velocity. At this time moment the bob is shifted up, so the length of the pendulum
changes from l0(1+ml) to l0(1−ml). During abrupt radial displacements of the bob along the
pendulum rod, the angular momentum L = Jφ̇ = Ml2φ̇ is conserved (M is mass of the bob,
J = Ml2 is the moment of inertia about the pivot). Therefore the angular velocity changes at
this moment from φ̇1 to (1+ml)

2/(1−ml)
2φ̇1. This means that the linear velocity v of the bob

changes from v1 = l0(1 + ml)φ̇1 to l0(1 + ml)/(1 − ml) v1. Then the pendulum moves from
the vertical φ = 0 up to the maximum deflection φm, whose value can be calculated using the
energy conservation:

1

2
v21

(
1 +ml

1−ml

)2

= g l0(1−ml)(1− cosφm). (2)

When the frequency and phase of the modulation have those values which are favorable for the
most effective delivery of energy to the pendulum, the abrupt backward displacement of the bob
toward the end of the rod occurs at the instant when the pendulum attains its greatest deflection
(more precisely, when the pendulum is very near it). At this instant the angular velocity of the
pendulum is almost zero. Hence this action produces no change in the kinetic energy. At this
time moment the bob is shifted down, and the length of the pendulum becomes l0(1+ml). The
pendulum starts its backward motion with zero velocity. Velocity v2 in the equilibrium position
which is gained during this motion, again can be calculated, like in Eq. (2), on the basis of
energy conservation:

1

2
v22 = g l0(1 +ml)(1− cosφm). (3)

From Eqs.(2)–(3) we find:

v22 = v21

(
1 +ml

1−ml

)3

, E2 = E1

(
1 +ml

1−ml

)3

, (4)

where E2 = v22/2 is the kinetic energy (per unit mass) after a period T of modulation. Hence

∆E

E
=

E2

E1

− 1 =

(
1 +ml

1−ml

)3

− 1 ≈ 6ml. (5)

The last approximate expression in Eq. (5) is valid for small values of the modulation depth
ml ≪ 1. That is, the fractional increment of total energy ∆E/E during one period T of mod-
ulation approximately equals 6ml. The sequence of energy values En at consecutive passages
through the equilibrium position forms a geometric progression. A process in which the incre-
ment in energy ∆E during a period is proportional to the energy E stored (dE/dt ≈ 6mlE/T )
is characterized on average by the exponential growth of the energy with time:

E(t) = E0 exp(
6ml

T
t) = E0 exp(αt). (6)
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In this case the index of growth α is proportional to the depth of modulation ml of the pendulum
length: α = 6ml/T . When the modulation is exactly tuned to the principal resonance (T =
T0/2), the decrease of energy is caused almost only by friction. Dissipation of energy due
to viscous friction during an integer number of natural half-cycles (for t = nT = nT0/2) is
described by the following expression:

E(t) = E0 exp(−2γt), (7)

where γ is the damping constant for the amplitude. Comparing equations (6) and (7), we obtain
the following estimate for the threshold (minimal) value (ml)min of the depth of modulation
corresponding to the excitation of the principal parametric resonance:

(ml)min =
1

3
γT =

1

6
γT0 =

π

6Q
. (8)

Here we introduced the dimensionless quality factor Q = ω0/(2γ) to characterize the strength
of viscous friction in the system.
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Figure 3: The phase trajectory (left) and the time-dependent graphs of stationary oscillations (right) at the threshold
condition ml ≈ π/(6Q) for T = T0/2.

The phase trajectory and the plots of time dependence of the angle and angular velocity of
parametric oscillations of a small amplitude occurring at the threshold conditions, Eq. (8), are
shown in Fig. 3. We can see on the graphs and the phase trajectory only abrupt increments in
the magnitude of the angular velocity occurring twice during the period of oscillation (when
the bob is shifted upward). The downward shifts of the bob occur at instants when the angular
velocity is almost zero. Therefore the corresponding decrements in velocity are too small to
be visible on the graphs. This mode of steady oscillations (which have a constant amplitude
in spite of the dissipation of energy) is called parametric regeneration. Computer simulations
show that regime of parametric regeneration is stable with respect to small variations in initial
conditions: at different initial conditions the phase trajectory and graphs acquire after a while
the same characteristic shape. However, this regime is unstable with respect to variations of
the pendulum parameters. If the friction is slightly greater or the depth of modulation slightly
smaller than Eq. (8) requires, oscillations gradually damp in spite of the modulation. Otherwise,
the amplitude grows.

For the third resonance (T = 3T0/2) the threshold value of the depth of modulation is three
times greater than its value for the principal resonance: (ml)min = π/(2Q). In this instance
two cycles of the parametric variation occur during three full periods of natural oscillations.
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Radial displacements of the pendulum bob again happen at the time moments most favorable
for pumping the pendulum — up at the equilibrium position, and down at the extreme positions.
The same investment in energy occurs during an interval that is three times longer than the
interval for the principal resonance.

When the depth of modulation exceeds the threshold value, the energy of initially small
oscillations during the first stage increases exponentially with time. For the principal parametric
resonance this initial growth is shown in Fig. 4. The growth of the energy again is described by
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Figure 4: Gradually fading beats of the amplitude of oscillations at parametric resonance of the first order (n = 1).

Eq. (6). However, now the index of growth α is determined by the amount by which the energy
delivered through parametric modulation exceeds the simultaneous losses of energy caused by
friction: α = 6ml/T − 2γ. If the swing is small enough, the energy is proportional to the
square of the amplitude. Hence the amplitude of parametrically excited oscillations initially also
increases exponentially with time: a(t) = a0 exp(βt). The index β in the growth of amplitude
is one half the index of the growth in energy. For the principal resonance, when the investment
in energy occurs twice during one natural period of oscillation, we have β = 3ml/T − γ =
6ml/T0 − γ = 3mlω0/π − γ.

If the threshold is exceeded, the amplitude grows, conditions of resonance violate, and this
causes a gradual reduction of the amplitude. At small amplitudes the natural period becomes
shorter, conditions of resonance restore, so that oscillations of the pendulum acquire the char-
acter of beats. Due to friction, these transient beats gradually fade, and eventually steady-state
oscillations of a finite amplitude establish (Fig. 4). We note again that the growth of amplitude
is restricted by nonlinear properties of the pendulum, namely, by the dependence of the natural
period T0 on the amplitude. For small and moderate values of the amplitude φm this depen-
dence is approximately given by T0(φm) ≈ Tsmall(1 + φ2

m/16), where Tsmall is the period of
infinitely small natural oscillations. In contrast with the ordinary resonance caused by direct
periodic forcing in a linear isochronous system, friction alone cannot restrict the growth of the
amplitude at parametric resonance. In an idealized linear system the amplitude of parametric
oscillations over the threshold grows indefinitely (Refs. [14] – [15]).

4. Feedback, parametric autoresonance, bifurcations, multistability

In the above analysis we assumed that the period T of modulation remains the same as
the amplitude increases. At exact tuning to the principal resonance this period equals T0/2,
where T0 is the period of small natural oscillations. When we apply the model of the pendulum
with modulated length for explaining the pumping of a playground swing, we should take into
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account that the child on the swing may notice the lengthening of the natural period as the
amplitude increases, and can react correspondingly, increasing the period of pumping to stay in
phase with the swing. This intuitive reaction may be considered as a kind of feedback loop: the
child determines the time instants to squat and to stand depending on the actual position of the
swing. We can include this feedback loop in our model by requiring that instantaneous upward
shifts of the bob of the pendulum occur exactly at the time moments, at which the pendulum
crosses the equilibrium position, and that backward shifts of the bob to the end of the rod occur
exactly at extreme positions of the pendulum. Such manipulations provide the optimal active
control for the most effective and rapid pumping.
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0 l

40 T
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Figure 5: Parametric pumping of the pendulum with the usage of a feedback loop that provides the most effective
delivery of energy to the pendulum.

Figure 5 shows the graph of progressively growing oscillations occurring under this optimal
control with a feedback. Initially the period of modulation T satisfies conditions of the principal
parametric resonance at small swing (T = T0/2). We note how the period T of the square-wave
modulation increases with the amplitude due to the feedback. After the amplitude reaches 180◦,
the pendulum executes full revolutions.

Certainly, the priests that pump O Botafumeiro also use the feedback (maybe intuitively)
for controlling the pendulum behavior. They increase gradually the period of modulation as the
amplitude grows, and then probably reduce the depth of modulation to the level, sufficient to
compensate for frictional losses and to maintain the desirable swing.

The strategy of optimal active control for the most rapid damping of existing oscillations on
the basis of feedback consists in reversing the phase of modulation. Namely, the length of the
pendulum must be increased at moments of crossing the equilibrium position, and the length
must be reduced at extreme positions.

Is it possible to excite large oscillations of the pendulum at a small excess of the drive over
the threshold without the feedback, that is, without appropriately adjusting the period and phase
of modulation as the amplitude grows? It occurs that under certain conditions a spontaneous
phase locking between the drive and the pendulum motion becomes possible: the pendulum
can automatically adjust its amplitude to stay matched with the drive. By sweeping the drive
period appropriately, we can control the amplitude of the pendulum. This phenomenon is called
parametric autoresonance. Autoresonance allows us to both excite and control a large resonant
response in nonlinear systems by a small forcing.

We can start pumping the pendulum by modulating its length with period T = T0/2, which
corresponds to resonant condition at an infinitely small swing. Then, in the process of oscil-
lations, we slowly increase the period of modulation. This can be done in small steps. After
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each increment of the period we wait for a while so that transients almost fade away. During
this time the amplitude increases just to the amount which provides matching of an increased
natural period of the pendulum with the new period of modulation. Thus in each step of this
sweeping the pendulum remains locked in phase with the drive.

To illustrate the phenomenon of parametric autoresonance in a computer simulation (Fig. 6),
we choose the following values for the pendulum parameters: depth of modulation 5%, quality
factor Q = 20. When the period of modulation is gradually increased from T = 0.5T0 up to
T = 0.9T0, the pendulum swings with an amplitude of 153◦. At T = 0.90T0 a bifurcation
of symmetry breaking occurs: the pendulum swings to one side through an angle of 161◦,
while its excursion to the other side is only 146◦. This asymmetry in the swing increases up to
T = 0.913T0, when a bifurcation of period doubling occurs: during two cycles of modulation
the pendulum executes one asymmetric oscillation between the values 161.39◦ and 146.88◦,
while during the next two cycles the pendulum swings between 161.49◦ and 144.25◦. Then the
process repeats. Thus one period of the pendulum motion covers now four periods of excitation.
These oscillations are illustrated in Fig. 6. We note that the closed phase trajectory is formed by
two nearby almost merging loops. Such asymmetric regimes exist (for the same values of ml

and Q) in pairs, whose phase orbits are mirror images of one another.
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Figure 6: Bifurcation of period doubling in parametric autoresonance.

Further increasing of the drive period by tiny steps causes a whole condensing cascade of
nearby period doubling bifurcations, which ends at T = 0.9148T0 by a crisis: oscillations of
the pendulum become unstable, finally it turns over the upper equilibrium, and then, after long
irregular transient oscillations with gradually diminishing amplitude, eventually comes to rest
in the downward vertical position.

Stationary parametric oscillations of the pendulum with large amplitude, locked in phase
with the drive and occurring at a small or moderate modulation (like those described above
and shown in Fig. 6), can be excited not only by slowly sweeping the drive period, but also by
appropriate initial conditions. The system eventually comes to a certain periodic regime (limit
cycle, or attractor), if initial conditions are chosen within the basin of attraction of this regime.
In nonlinear systems different periodic regimes may coexist at the same values of parameters.
This property is called multistability.

An example of multistability is shown in Fig. 7. Curve 1 (upper side of Fig. 7) describes
stationary periodic oscillations of the pendulum with a finite amplitude corresponding to the
principal parametric resonance. One period of these oscillations covers two cycles of excitation.
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Figure 7: Stationary periodic oscillations and rotations, occurring at the same values of the system parameters.

Curves 2 and 3 (lower side of Fig. 7) correspond to period-1 unidirectional rotations of the
pendulum in clockwise and counterclockwise directions respectively. The pendulum makes
one revolution during each period of modulation. One more attractor is represented by a single
point at the origin of the phase plane, which describes the state of rest of the pendulum in the
downward vertical position. Each of these different stationary modes, coexisting at the same
values of all parameters of the pendulum and the drive, is characterized by a certain basin of
attraction in the phase plane of initial states.

5. Governing equation for parametric oscillations and the mean natural period at large
depth of modulation

Next we consider a more rigorous mathematical treatment of parametric resonance under
square-wave modulation of the parameter. During the time intervals (0, T/2) and (T/2, T ),
the length of the pendulum is constant, and its motion can be considered as a free oscillation
described by a corresponding differential equation. However, the coefficients in this equation
are different for the adjacent time intervals (0, T/2) and (T/2, T ):

φ̈+ 2γφ̇+ ω2
1 sinφ = 0, ω1 =

ω0√
1 +m

for 0 < t < T/2, (9)

φ̈+ 2γφ̇+ ω2
2 sinφ = 0, ω2 =

ω0√
1−m

for − T/2 < t < 0. (10)

Here ω0 =
√

g/l0 is the natural frequency of small oscillations for the pendulum with mean
length l0, and γ is the damping constant characterizing the strength of viscous friction. For
a slow pendulum traveling in air, the linear dependence of drag on velocity is a reasonable
approximation. When damping is caused by the drag force exerted on the pendulum bob, and
this force is proportional to the linear velocity of the bob, the frictional torque about the pivot is
proportional to l2. Since the moment of inertia is also proportional to l2, the damping constant
γ in this model remains the same when the length of the pendulum changes, that is, its values
in Eqs. (9) and (10) are equal.

At each instant tn = nT/2 (n = 1, 2, . . . ) of an abrupt change in the length of the
pendulum, we must make a transition from one of these equations (9)–(10) to the other. During
each half-period T/2 the motion of the pendulum is a segment of some natural oscillation. An
analytical investigation of parametric excitation can be carried out by fitting to one another
known solutions to equations (9)–(10) for consecutive adjacent time intervals.

10



The initial conditions for each subsequent time interval are chosen according to the physical
model in the following way. Each initial value of the angular displacement φ equals the value
φ(t) reached by the oscillator at the end of the preceding time interval. The initial value of the
angular velocity φ̇ is related to the angular velocity at the end of the preceding time interval by
the law of conservation of the angular momentum:

(1 +ml)
2φ̇1 = (1−ml)

2φ̇2. (11)

In Eq. (11) φ̇1 is the angular velocity at the end of the preceding time interval, when the moment
of inertia of the pendulum has the value J1 = J0(1 + ml)

2, and φ̇2 is the initial value for the
following time interval, during which the moment of inertia equals J2 = J0(1 − ml)

2. The
change in the angular velocity at an abrupt variation of the inertia moment from the value J2 to
J1 can be found in the same way.

We may use here the conservation of angular momentum, as expressed in Eq. (11), because
at sufficiently rapid displacement of the bob along the rod of the pendulum, the influence of
the torque produced by the force of gravity is negligible. In other words, we can assume the
pendulum to be freely rotating about its axis. This assumption is valid provided the duration of
the displacement of the bob constitutes a small portion of the natural period.

Considering conditions for which equations (9)–(10) yield solutions with increasing ampli-
tudes, we can determine the ranges of frequency ω near the values ωn = 2ω0/n, within which
the state of rest is unstable for a given modulation depth ml. In these ranges of parametric in-
stability an arbitrarily small deflection from equilibrium is sufficient for the progressive growth
of small initial oscillations.

The threshold for the parametric excitation of the pendulum is determined above for the
resonant situations in which two cycles of the parametric modulation occur during one natural
period or during three natural periods of oscillation. The estimate obtained, Eq. (8), is valid for
small values of the modulation depth ml of the pendulum length.

For large values of the modulation depth ml, the notion of a natural period needs a more
precise definition. Let T0 = 2π/ω0 = 2π

√
l0/g be the period of oscillation of the pendulum

when its massive bob is fixed in the middle position, for which the effective length equals
l0. The period is somewhat longer when the weight is moved further from the axis: T1 =
T0

√
1 +ml ≈ T0(1+ml/2). The period is shorter when the weight is moved closer to the axis:

T2 = T0

√
1−ml ≈ T0(1−ml/2).

It is convenient to define the natural average period Tav not as the arithmetic mean 1
2
(T1+T2),

but rather as the period that corresponds to the arithmetic mean frequency ωav = 1
2
(ω1 + ω2),

where ω1 = 2π/T1 and ω2 = 2π/T2. So we define Tav by the relation:

Tav =
2π

ωav

=
2T1T2

(T1 + T2)
. (12)

Indeed, the period T of the parametric modulation which is exactly tuned to any of the paramet-
ric resonances is determined not only by the order n of the resonance, but also by the depth of
modulation ml. In order to satisfy the resonant conditions, the increment in the phase of natural
oscillations during one cycle of modulation must be equal to π, 2π, 3π, . . . , nπ, . . . . During the
first half-cycle the phase of oscillation increases by ω1T/2, and during the second half-cycle —
by ω2T/2. Consequently, instead of the approximate condition expressed by Eq. (1), we obtain:

ω1 + ω2

2
T = nπ, or T = Tn = n

π

ωav

= n
Tav

2
. (13)

Thus, for a parametric resonance of some definite order n, the condition for exact tuning can be
expressed in terms of the two natural periods, T1 and T2. This condition is T = nTav/2, where
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Tav is defined by Eq. (12). For small and moderate values of ml it is possible to use approximate
expressions for the average natural frequency and period:

ωav =
ω0

2

(
1√

1 +ml

+
1√

1−ml

)
≈ ω0

(
1 +

3

8
m2

l

)
, Tav ≈ T0

(
1− 3

8
m2

l

)
. (14)

The difference between Tav and T0 reveals itself in terms proportional to the square of the depth
of modulation ml.

6. Frequency ranges for parametric resonances of odd orders

To find the boundaries of the frequency ranges of parametric instability surrounding the
resonant values T = Tav/2, T = Tav, T = 3Tav/2, . . . , we can consider stationary oscillations
of indefinitely small amplitude that occur when the period of modulation T corresponds to one
of the boundaries. These periodic stationary oscillations can be represented as an alternation of
natural oscillations with the periods T1 and T2.
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Figure 8: Phase trajectory and time-dependent graphs of stationary parametric oscillations at the lower boundary
of the principal interval of instability (near T = Tav/2).

6.1. Main interval of parametric instability
We examine first the vicinity of the principal resonance occurring at T = Tav/2. Suppose

that the period T of the parametric square-wave modulation is a little shorter than the resonant
value T = Tav/2, so that T corresponds to the left boundary of the interval of instability. In
this case a little less than a quarter of the mean natural period Tav elapses between consecutive
abrupt increases and decreases of the pendulum length. Stationary regime with a constant swing
in the absence of friction can be realized only if the abrupt increments and decrements of the
angular velocity are equal in magnitude. The graphs of the angle φ(t) and angular velocity φ̇(t)
for this periodic stationary process have the characteristic symmetric patterns shown in Fig. 8.
The segments of the graphs of free oscillations (which occur within time intervals during which
the length of the pendulum is constant) are alternating parts of sine or cosine curves with the
periods T1 and T2. These segments are symmetrically truncated on both sides.

To find conditions at which such stationary oscillations take place, we can write the expres-
sions for φ(t) and φ̇(t) during the adjacent intervals in which the oscillator executes natural
oscillations, and then fit these expressions to one another at the boundaries. Such fitting must
provide a periodic stationary process.
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We let the origin of time, t = 0, be the instant when the bob is shifted downward. The
angular velocity is abruptly decreased in magnitude at this instant (see Fig. 8). Then during the
interval (0, T/2) the graph describes a natural oscillation with the frequency ω1 = ω0/

√
1 +m.

Since the graph is symmetric with respect to time moment T/4, we can write the corresponding
time dependencies of φ(t) and φ̇(t) in the following form:

φ1(t) = −A1 cosω1(t− T/4), φ̇1(t) = A1ω1 sinω1(t− T/4), 0 < t < T/2. (15)

Similarly, during the interval (−T/2, 0) the graph in Fig. 8 is a segment of natural oscillation
with the frequency ω2 = ω0/

√
1−m:

φ2(t) = −A2 sinω2(t+ T/4), φ̇2(t) = −A2ω2 cosω2(t+ T/4), −T/2 < t < 0. (16)

To determine the values of constants A1 and A2, we use the conditions that must be satisfied
when the segments of the graph are joined together, and take into account the periodicity of the
stationary process. At t = 0 the angle of deflection is the same for both φ1 and φ2, that is,
φ1(0) = φ2(0). The angular velocity at t = 0 undergoes a sudden change, which follows from
the conservation of angular momentum: (1+ml)

2φ̇1(0) = (1−ml)
2φ̇2(0), see Eq. (11). From

these conditions of fitting the graphs we find the following equations for A1 and A2:

A1 cos(ω1T/4) = A2 sin(ω2T/4). (17)

A1(1 +ml)
2ω1 sin(ω1T/4) = A2(1−ml)

2ω2 cos(ω2T/4). (18)

These homogeneous equations (17)–(18) for A1 and A2 are compatible only if the following
condition is fulfilled:

(1 +ml)
2ω1 sin(ω1T/4) sin(ω2T/4) = (1−ml)

2ω2 cos(ω1T/4) cos(ω2T/4). (19)

This is the equation that determines period T of modulation (for a given value ml of the depth
of modulation) which corresponds to the left boundary of the interval of parametric instability.
Next we rearrange Eq. (19) to the following form which is convenient for obtaining its numeric
solution for the unknown variable T :

(q + 1) cos(ωavT/2) = (q − 1) cos(∆ωT/4), (20)

where ωav = (ω1 + ω2)/2, and ∆ω = ω2 − ω1. In Eq. (20) we have introduced a dimensionless
quantity q which depends on the depth of modulation ml:

q =

(
1 +ml

1−ml

)3/2

. (21)

To find the left boundary T− of the instability interval which contains the principal para-
metric resonance, we search for a solution T to Eq. (20) in the vicinity of T = T0/2. We
replace T in the argument of the cosine on the left-hand side of Eq. (20) by Tav/2 +∆T . Since
ωavTav = 2π, we can write the cosine as − sin(ωav∆T/2). Then Eq. (20) becomes:

sin(ωav∆T/2) = −q − 1

q + 1
cos

∆ω(Tav/2 + ∆T )

4
. (22)

This equation for the unknown quantity ∆T can be solved numerically by iteration. We start
with ∆T = 0 as an approximation of the zeroth order, substituting it into the right-hand side
of Eq. (22). Then the left-hand side of Eq. (22) gives us the value of ∆T to the first order. We
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Figure 9: Intervals of parametric instability at square-wave modulation of the pendulum length in the absence of
friction.

substitute this first-order value into the right-hand side of Eq. (22), and on the left-hand side we
obtain ∆T to the second order. This procedure is iterated until a self-consistent value of ∆T
for the left boundary is obtained. Performing such calculations for various values of the mod-
ulation depth ml, we obtain the whole left boundary T−(ml) for the first interval of parametric
instability. Below we explain how the right boundary of this interval can be calculated, as well
as the boundaries of other intervals.

The intervals of instability in the plane T — ml for the first six parametric resonances,
calculated numerically with the help of the above described procedure, are shown in Fig. 9.
This is an analog of the Incze-Strutt diagram of parametric instability for a system which is
described by Mathieu equation, say, for a pendulum with vertical oscillations of the suspension
point.

To observe stationary oscillations that correspond to the left boundary of the instability
interval (see Fig. 8) in the simulation, it is insufficient to choose for period T of modulation
a self-consistent solution to Eq. (22) for a given value of modulation depth ml. After period
T is calculated, also the initial conditions should be chosen properly. This can be done on the
basis of Eq.(15), according to which for an arbitrary initial displacement φ(0) the initial angular
velocity should have the value φ̇1(0) = ω1 tan(ω1T/4)φ1(0).

For the right boundary of the main interval of instability, the period T of the parametric
square-wave modulation is a little longer than the resonant value T = Tav/2. In this case a little
more than a quarter of the mean natural period Tav elapses between consecutive abrupt increases
and decreases of the pendulum length. The graphs of the angle φ(t) and angular velocity φ̇(t)
for this periodic stationary process are shown in Fig. 10. We can write the corresponding time
dependencies of φ(t) and φ̇(t) for the time interval (0, T/2) in the following form:

φ1(t) = B1 sinω1(t− T/4), φ̇1(t) = B1ω1 cosω1(t− T/4), 0 < t < T/2. (23)

During the interval (−T/2, 0) the graph in Fig. 10 is a segment of natural oscillation with the
frequency ω2 = ω0/

√
1−m:

φ2(t) = −B2 cosω2(t+ T/4), φ̇2(t) = B2ω2 sinω2(t+ T/4), −T/2 < t < 0. (24)

Further calculations are similar to those for the left boundary described after Eqs. (15)–(16).
It occurs that ∆T for the right boundary is determined as a solution to equation which differs
from Eq. (22) by the opposite sign on its right-hand side. Solving it numerically by iterations
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Figure 10: Stationary parametric oscillations at the upper boundary of the principal interval of instability (near
T = Tav/2).

for various values of ml, we obtain the right boundary of the principal interval (n = 1) of
parametric instability, Fig. 9.

To obtain approximate analytical solutions to Eq. (22) that are valid for small values of the
modulation depth ml, we can simplify the expression on its right-hand side by assuming that
q ≈ 1 + 3ml, q − 1 ≈ 3ml. We may also assume the value of the cosine to be approximately
1. On the left-hand side of Eq. (22), the sine can be replaced by its small argument, in which
ωav = 2π/Tav. This yields the following approximate expressions for both boundaries of the
main interval that are valid up to terms to the second order in ml:

T∓ =
1

2

(
1∓ 3ml

π

)
Tav =

1

2

(
1∓ 3ml

π
− 3m2

l

8

)
T0. (25)

6.2. Third-order interval of parametric instability
The boundaries of the instability intervals that contain higher order parametric resonances

can be determined in a similar way. At the third order resonance (n = 3) two cycles of vari-
ation of the pendulum length occur during approximately three natural periods of oscillation
(T ≈ 3Tav/2). The phase trajectories and the time-dependent graphs of stationary oscillations
at the left and right boundaries of the third interval are shown in Fig. 11. The phase orbit of the
periodic oscillation closes after two cycles of modulation. This orbit is formed by two concen-
tric ellipses which correspond to small natural oscillations of the pendulum with frequencies ω1

and ω2. The representative point moves clockwise along this orbit, jumping from one ellipse to
the other each time the bob is shifted along the pendulum rod. The numbers in Fig. 11 make
easier following how the representative point describes this orbit: equivalent points of the phase
orbit and the graph of angular velocity are marked by equal numbers.

Considering conditions at which the graphs of natural oscillations with frequencies ω1 and
ω2 on the left boundary fit one another for adjacent time intervals and produce the periodic
process shown in Fig. 11, we get the same Eqs. (17)–(18) for A1 and A2, as well as Eq. (22) for
the period of modulation. Actually, this is true for all intervals of parametric instability of odd
orders. Similarly, for the right boundary we get the same equations for B1 and B2 as in case
n = 1, and also Eq. (22) with the opposite sign for determination of the corresponding period
of modulation T . However, if we are interested in the third interval, we should search for a
solution to these equations in the vicinity of T = 3Tav/2, as well as for any other interval of
odd order n — in the vicinity of T = nTav/2. The boundaries of intervals of the third and fifth
orders, obtained by a numerical solution, are also shown in Fig. 9.

15



0

 0  1  2  3

6 67 7

8 8

1 1

2 23 3

4 4

5 5

−1

ϕ (  )t
.

ϕ (  )t

Dl-

T

m = 20%

T = 1.3928 T0

l

1

Left boundary:

 0  1  2  3−1

m = 20%

T = 1.5592 T0

l

11

2 2

33

44 5 5

6 6

77

8 81

T

ϕ (  )t
.

ϕ (  )t

Dl-

Right boundary:

Figure 11: The phase trajectory and the graphs of the angular velocity and the deflection angle of stationary
parametric oscillations at the left and right boundaries of the interval of instability near T = 3Tav/2.

For small values of the depth of modulation ml, we can find approximate analytical expres-
sions for the lower and the upper boundaries of the third interval that are valid up to quadratic
terms in ml:

T∓ =
3

2

(
1∓ ml

π

)
Tav =

3

2

(
1∓ ml

π
− 3m2

l

8

)
T0, ml ≪ 1. (26)

In this approximation, the third interval has the same width (3ml/π)T0 as does the interval of
instability in the vicinity of the principal resonance. However, this interval is distinguished by
greater asymmetry: its central point is displaced to the left of the value T = 3

2
T0 by 9

16
m2

l T0.

7. Parametric resonances of even orders

For small and moderate square-wave modulation of the pendulum length, parametric reso-
nance of the order n = 2 (one cycle of the modulation during one natural period of oscillation)
is relatively weak compared to the above considered resonances n = 1 and n = 3. In the case
in which n = 2 the abrupt shifts of the bob induce both an increase and a decrease of the energy
only once during each natural period. The growth of oscillations occurs only if the increase in
energy at the instant when the bob is shifted up is greater than the decrease in energy when the
bob is shifted down. This is possible only if the bob is shifted up when the angular velocity of
the pendulum is greater in magnitude than it is when the bob is shifted down. For T ≈ Tav,
these conditions can fulfill only because there is a (small) difference between the natural periods
T1 and T2 of the pendulum, where T1 = T0

√
1 +ml is the period with the bob shifted down and
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T2 = T0

√
1−ml is the period with the bob shifted up. This difference in the natural periods is

proportional to ml.
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Figure 12: The phase trajectory and the graphs of angular velocity φ̇(t) and angle φ(t) of oscillations correspond-
ing to parametric resonance of the second order n = 2 (T = Tav).

The growth of oscillations at parametric resonance of the second order is shown in Fig. 12.
We note the asymmetric character of oscillations at n = 2 resonance: the angular excursion
of the pendulum to one side is greater than to the other. In this case, the investment in energy
during a period is proportional to the square of the depth of modulation ml, while in the cases
of resonances with n = 1 and n = 3 the investment in energy is proportional to the first power
of ml. Therefore, for the same value of the damping constant γ (the same quality factor Q), a
considerably greater depth of modulation is required here to exceed the threshold of parametric
excitation. The growth of the amplitude again is restricted by the nonlinear properties of the
pendulum.

The interval of instability in the vicinity of n = 2 resonance (for small values of ml) is
considerably narrower compared to the corresponding intervals of n = 1 and n = 3 resonances.
Its width is also proportional only to the square of ml.

To determine the boundaries of this interval of instability, we can consider, as is done above
for other resonances, stationary oscillations for T ≈ T0 formed by alternating segments of
free oscillations with the periods T1 and T2. The phase trajectory and the graphs of the angular
velocity φ̇(t) and the angle φ(t) of such stationary periodic oscillations for one of the boundaries
are shown in Fig. 13. During oscillations occurring at the boundary of the instability interval,
the abrupt increment and decrement in the angular velocity exactly compensate each other.

To describe these stationary oscillations with small amplitude, we can use the following
expressions for φ(t) and φ̇(t) in the interval (0, −T/2) (see Fig. 13):

φ1(t) = −A1 cosω1(t− T/4), φ̇1(t) = A1ω1 sinω1(t− T/4), 0 < t < T/2, (27)

and during the interval (−T/2, 0)

φ2(t) = A2 cosω2(t+ T/4), φ̇2(t) = −A2ω2 sinω2(t+ T/4), −T/2 < t < 0. (28)

The conditions for joining the graphs at t = 0 are the same as for other resonances, namely, at
t = 0 we require φ1(0) = φ2(0), and the angular velocity undergoes a sudden change, which
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Figure 13: Stationary parametric oscillations at the left boundary of the interval of instability of the second order
n = 2 (near T = Tav ≈ T0).

follows from the conservation of angular momentum (see Eq. (11)). From these conditions we
find the following equations for A1 and A2:

A1 cos(ω1T/4) = −A2 cos(ω2T/4), (29)

A1(1 +ml)
2ω1 sin(ω1T/4) = A2(1−ml)

2ω2 sin(ω2T/4). (30)

These homogeneous equations (29)–(30) for A1 and A2 are compatible only if the following
condition is fulfilled:

(1 +ml)
2ω1 sin(ω1T/4) cos(ω2T/4) = −(1−ml)

2ω2 sin(ω2T/4) cos(ω1T/4). (31)

This is the equation that determines period T of modulation (for a given value ml of the depth of
modulation) which corresponds to the left boundary of the 2nd interval of parametric instability.
We transform Eq. (31) to the following form which is convenient for a numeric solution by
iteration:

(q + 1) sin(ωavT/2) = (q − 1) sin(∆ωT/4), (32)

where q depends on the depth of modulation ml according to Eq. (21). Next we replace T in
the argument of the sine on the left-hand side of Eq. (32) by Tav +∆T . Since ωavTav = 2π, we
can write this sine as − sin(ωav∆T/2). Then Eq. (32) becomes:

sin(ωav∆T/2) = −q − 1

q + 1
sin

∆ω(Tav +∆T )

4
. (33)

This equation for ∆T can be solved numerically by iteration with the help of the above de-
scribed procedure. Its self-consistent solutions for various values of the modulation depth ml

give the left boundary of the n = 2 instability interval. After period T for this boundary is
calculated, the initial conditions that provide stationary oscillations can be chosen on the basis
of Eq. (27), according to which, for an arbitrary initial displacement φ(0), the initial angular
velocity should have the value φ̇1(0) = ω1 tan(ω1T/4)φ1(0).

The right boundary of the 2nd interval is given by equation which differs from Eq. (33)
by the opposite sign on its right-hand side. Both boundaries are shown on the diagram in
Fig. 9 together with intervals of higher even orders, which are obtained with the help of similar
numeric calculations.

18



We note how the intervals of even resonances (n =2, 4, 6) are narrow at small values of the
modulation depth ml in contrast to the intervals of odd orders. With the growth of ml the even
intervals expand and become comparable with the intervals of odd orders.

For small and moderate values of the depth of modulation ml ≪ 1, an approximate analyt-
ical expression for both boundaries of the 2nd interval of instability can be found as a solution
to Eq. (33) (and to equation with the opposite sign for the other boundary):

T∓ =

(
1∓ 3

4
m2

l

)
Tav = T0 +

(
∓3

4
− 3

8

)
m2

l T0, (34)

i.e., T− = T0(1− 9
8
m2

l ), T+ = T0(1 +
3
8
m2

l ). As mentioned above, the width of this interval of
instability T+ − T− = 3

2
m2

l T0 is proportional to the square of the modulation depth.

8. Intersections of the boundaries at large modulation

Figure 9 shows that at certain values of ml both boundaries of intervals with n > 2 coincide
(we may consider that they intersect). This means that at these values of ml the corresponding
intervals of parametric instability disappear. Such values of ml correspond to the natural periods
of oscillation T1 and T2, whose ratio is 2 : 1, 3 : 1, and 3 : 2.
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Figure 14: The phase trajectory and time-dependent graphs of angular velocity φ̇(t) and angle φ(t) for stationary
oscillations at the intersection of both boundaries of the third interval.

For the first intersection (ratio 2 : 1) exactly one half of the natural oscillation with period T1

is completed during the first half of the modulation cycle (see Fig. 14). On the phase diagram,
the representing point traces a half of the smaller ellipse (1 — 2), and then abruptly jumps
down to the larger ellipse (2 — 3). During the second half of the modulation cycle the oscillator
executes exactly a whole natural oscillation with period T2 = T1/2, so that the representing
point passes in the phase plane along the whole larger ellipse (3 — 4), and then jumps up to the
smaller ellipse along the same vertical segment (4 — 5).

During the next modulation cycle the representing point generates first the other half of the
smaller ellipse (5 — 6), and then again the whole larger ellipse (7 — 8). Therefore during any
two adjacent cycles of modulation the representing point passes once along the closed smaller
ellipse and twice along the larger one, returning finally to the initial point of the phase plane.
We see that such an oscillation is periodic for arbitrary initial conditions. This means that for
the corresponding values of the modulation depth ml and the period of modulation T the growth
of amplitude is impossible even in the absence of friction (the instability interval vanishes).

Similar explanations can be suggested for other cases in Fig. 9 in which the boundaries of
the instability intervals intersect.
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9. Intervals of parametric excitation in the presence of friction

When there is friction in the system, the intervals of the period of modulation that cor-
respond to parametric instability become narrower, and for strong enough friction (below the
threshold) the intervals disappear. Above the threshold, approximate values for the bound-
aries of the first interval are given by Eq. (25) provided we substitute for ml the expression√
m2

l − (ml)2min with the threshold value (ml)min = π/(6Q) defined by Eq. (8). The proof can
be found in Appendix. For the third interval, we can use Eq. (26), substituting

√
m2

l − (ml)2min

for ml, with (ml)min = π/(2Q). When ml is equal to the corresponding threshold value
(ml)min, the interval of parametric resonance disappears.
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Figure 15: Intervals of parametric excitation at square-wave modulation of the pendulum length without friction,
for Q = 7, Q = 5, and for Q = 3.

The boundaries of the second interval of parametric resonance in the presence of friction are
approximately given by Eq. (34) provided we substitute for m2

l the expression
√
m4

l − (ml)4min

with the threshold value (ml)min =
√

2/(3Q), which corresponds to the second parametric
resonance (see Appendix).

The diagram in Fig. 15 shows the boundaries of the first three intervals of parametric reso-
nance for Q = 3, Q = 5, and Q = 7 (and also in the absence of friction). We note the “island”
of parametric resonance of the 3rd order (n = 3) at Q = 7. This resonance disappears when the
depth of modulation exceeds 48% and reappears when ml exceeds approximately 66%.

In the presence of friction, for any given value ml of the depth of modulation, only several
first intervals of parametric resonance (where ml exceeds the threshold) can exist. We note that
in case the equilibrium of the system is unstable due to modulation of the parameter, parametric
resonance can occur only if at least small oscillations are already excited. Indeed, when the
initial values of φ and φ̇ are exactly zero, they remain zero over the course of time. This
behavior is in contrast to that of resonance arising from direct forcing, when the amplitude
increases with time even if initially the system is at rest in the equilibrium position (if the initial
conditions are zero).

10. Concluding remarks

We have shown in this paper that a pendulum whose length is subject to square-wave mod-
ulation by mass reconfiguration gives a very convenient example in which the phenomenon of

20



parametric resonance in a nonlinear system can be clearly explained physically with all its pe-
culiarities. The threshold of parametric excitation is easily determined on the basis of energy
considerations.

In a linear system, if the threshold of parametric excitation is exceeded, the amplitude of
oscillations increases exponentially with time. In contrast to forced oscillations, linear viscous
friction is unable to restrict the growth of the amplitude at parametric resonance. In real systems
like the pendulum the growth of the amplitude is restricted by nonlinear effects that cause the
natural period to depend on the amplitude. During parametric excitation the growth of the
amplitude causes an increment in the natural period of the pendulum. The system slips out of
resonance, the swing becomes smaller, and conditions of resonance restore. These transient
beats fade out due to friction, and oscillations of finite amplitude eventually establish.

Computer simulations aid substantially in understanding the restriction of the amplitude
growth over the threshold caused by nonlinear properties of the pendulum. The simulations
illustrate the phenomenon of parametric autoresonance, stationary periodic oscillatory and ro-
tational regimes that are possible due to the phase locking between the drive and the pendulum.
The simulations reveal also bifurcations of symmetry breaking and intriguing sequences of pe-
riod doubling. The boundaries of parametric instability for a pendulum with the square-wave
modulated length are investigated quantitatively by rather modest mathematical means.

Appendix
The boundaries of instability in the presence of friction

Resonances of odd orders
Stationary oscillations occurring at the left boundary of the instability interval in the vicinity

of the principal parametric resonance in the presence of friction are shown in Fig. 16 (compare
with Fig. 8). Twice during the full cycle of modulation the angular velocity abruptly increases,
and twice it decreases. The increments are greater than the decrements, so that as a whole the
energy received by the pendulum exceeds the energy given away. This surplus compensates for
the dissipation of the energy which occurs at natural oscillation during the intervals between the
abrupt displacements of the bob along the rod of the pendulum.
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Figure 16: Stationary oscillations in the presence of friction at the left boundary of the principal instability interval.

To find conditions at which such stationary oscillations take place, we can write the ex-
pressions for φ(t) and φ̇(t) during the adjacent intervals when the pendulum executes damped
natural oscillations, and then fit these expressions to one another at the boundaries. Contrary to
the frictionless pendulum (see Fig. 8), now the phase trajectory is not symmetric with respect to
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the ordinate axis (Fig. 16). We choose as the time origin t = 0 the instant when the bob is shifted
down, and the angular velocity decreases in magnitude. Then during the interval (0, T/2) the
graph describes a damped natural oscillation with the frequency ω1 = ω0/

√
1 +ml. We can

represent this motion as a superposition of damped oscillations of sine and cosine type with
some constants A1 and B1:

φ1(t) = (A1 sinω1t+B1 cosω1t) e
−γt,

φ̇1(t) ≈ (A1ω1 cosω1t−B1ω1 sinω1t) e
−γt. (35)

The latter expression for φ̇(t) is valid for relatively weak friction (γ ≪ ω0). To obtain it,
we differentiate φ(t) with respect to the time, considering the exponential factor e−γt to be
approximately constant. Indeed, at weak damping the main contribution to the time derivative
originates from the oscillating factors sinω1t and cosω1t in the expression for φ(t). Similarly,
during the interval (−T/2, 0) the graph in Fig. 16 is a segment of damped natural oscillation
with the frequency ω2:

φ2(t) = (A2 sinω2t+B2 cosω2t) e
−γt, (36)

φ̇2(t) ≈ (A2ω2 cosω2t−B2ω2 sinω2t) e
−γt. (37)

To determine the values of constants A1, A2, and B1, B2, we use the conditions that must
be satisfied when the segments of the graph are joined together, and take into account the pe-
riodicity of the stationary process. At t = 0 the angle of deflection is the same for both φ1

and φ2, that is, φ1(0) = φ2(0). From this condition we get B2 = B1. We later denote these
equal constants by B. The angular velocity at t = 0 undergoes a sudden change, which follows
from the conservation of angular momentum: (1 +ml)

2φ̇1 = (1 −ml)
2φ̇2, see Eq. (11). This

condition gives us the following relation between A1 and A2: A2 = qA1 = qA (further on we
denote A1 as A), where the factor q depends on modulation depth ml according to Eq. (21).

For stationary periodic oscillations, corresponding to the principal resonance, as well as to
all resonances of odd orders n = 1, 3, . . . in Eq. (13), the conditions of periodicity are:

φ1(T/2) = −φ2(−T/2), (1 +m)2φ̇1(T/2) = −(1−m)2φ̇2(−T/2). (38)

Substituting φ and φ̇ in Eq. (38), we obtain the system of homogeneous equations for the un-
known quantities A and B:

(pS1 − qS2)A+ (pC1 + C2)B = 0,

q(pC1 + C2)A− (p qS1 − S2)B = 0, (39)

where p = exp(−γT ). In Eq. (39) the following notations are used:

C1 = cos(ω1T/2), C2 = cos(ω2T/2),

S1 = sin(ω1T/2), S2 = sin(ω2T/2). (40)

The homogeneous system of Eqs. (39) for A and B has a non-trivial (non-zero) solution only if
its determinant is zero:

2qC1C2 − (1 + q2)S1S2 + q(p+ 1/p) = 0. (41)

This condition for the existence of a non-zero solution to Eqs. (39) gives us an equation for the
unknown variable T , which enters Eq. (41) as the arguments of sine and cosine functions in S1,
S2 and C1, C2, and also as the argument of the exponent in p = e−γT . The desired boundaries of
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the interval of instability T− and T+ are given by the roots of the Eq. (41). To find approximate
solutions T to this transcendental equation, we transform it into a more convenient form. We
first represent in Eq. (41) the products C1C2 and S1S2 as follows:

C1C2 =
1

2
(cos

∆ωT

2
+ cosωavT ), S1S2 =

1

2
(cos

∆ωT

2
− cosωavT ), (42)

Then, using the identity cosα = 2 cos2(α/2) − 1, we reduce equation (41) to the following
form:

(q + 1) cos(ωavT/2) = ±
√

(q − 1)2 cos2(∆ωT/4)− q(p+ 1/p− 2). (43)

To find the boundaries of the interval which contains the principal resonance, we should
search for a solution T of Eq. (43) in the vicinity of T = T0/2 ≈ Tav/2. If for a given value
of the quality factor Q (Q enters p = e−γT ) the depth of modulation ml exceeds the threshold
value, Eq. (43) has two solutions which correspond to the desirable boundaries T− and T+ of
the instability interval. These solutions exist if the expression under the radical sign in Eq. (43)
is positive. Its zero value corresponds to the threshold conditions:

(q − 1)2

q
cos2(∆ωT/4) = p+

1

p
− 2. (44)

To evaluate the threshold value of Q for small values of the modulation depth ml ≪ 1, we
may assume here q ≈ 1 + 3ml (see Eq. (21)), and cos(∆ωT/4) ≈ 1. On the right-hand side of
Eq. (44), in p = e−γT , we can consider γT ≈ γT0/2 = π/(2Q) ≪ 1, so that p + 1/p − 2 ≈
(γT )2 = (π/2Q)2. Thus, for the threshold of the principal parametric resonance we obtain

Qmin ≈ π

6ml

(ml)min ≈ π

6Q
. (45)

At the threshold the expression under the radical sign in Eq. (43) is zero. Both its roots (the
boundaries of the instability interval) merge. This occurs when the cosine on the left-hand side
of Eq. (43) is zero, that is, when its argument equals π/2:

ωav
T

2
=

π

2
, or T =

π

ωav

=
1

2
Tav,

so that the threshold conditions (45) correspond to exact tuning to resonance, when T = Tav/2.
To find the boundaries T− and T+ of the instability interval, we represent T in the argument

of the cosine function on the left-hand side of Eq. (43) as Tav/2 + ∆T . Since ωavTav = 2π, we
can write this cosine as − sin(ωav∆T/2). Then Eq. (43) becomes:

sin(ωav∆T/2) = ∓ 1

q + 1

√
(q − 1)2 cos2

∆ω(1
2
Tav +∆T )

4
− q

(p− 1)2

p
. (46)

For zero friction p = 1, and Eq. (46) coincides with Eq. (21). The diagram in Fig. 15 is
obtained by numerically solving this equation for ∆T by iteration. Boundaries of the instability
for intervals of higher odd orders n = 3, 5, . . . are calculated similarly by representing T in
Eq.(43) as nTav/2 + ∆T . They are also shown in Fig. 15 for several values of the quality
factor Q. For large values of the modulation depth ml these boundaries almost merge with the
corresponding boundaries in the absence of friction.

To find an approximate solution of Eq. (46), that is valid for small values of the modulation
depth ml ≪ 1 up to terms to the second order in ml, we can simplify the expression under the
radical sign on the right-hand side of Eq. (39), assuming q ≈ 1 + 3ml, (q − 1)2 ≈ 9m2

l , and
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the value of the cosine function to be 1. The last term of the radicand can be represented as
(π/6Q)2 ≈ (ml)

2
min. On the left-hand side the sine can be replaced with its small argument,

where ωav = 2π/Tav. Thus we obtain:

∆T

Tav

≈ ∓ 3

2π

√
m2

l − (ml)2min, or T∓ =
Tav

2

(
1∓ 3

π

√
m2

l − (ml)2min

)
. (47)

For the case of zero friction (ml)min = 0, and these approximate expressions for the bound-
aries of the instability interval reduce to Eq. (25). For the threshold conditions ml = (ml)min,
and both boundaries of the interval merge, that is, the interval disappears.

After the substitution of one of the roots T− or T+ of Eq. (25) into (39), both equations
for A and B become equivalent and allow us to find only the ratio A/B. Nevertheless, these
oscillations have a definite shape which is determined by the ratio of the amplitudes A and B
of the sine and cosine functions whose segments form the pattern of the stationary parametric
oscillation (see Figs. 8 and 10).

Resonances of even orders
To describe stationary oscillations occurring on the boundaries of instability intervals of

even orders, we can use the same expressions for φ(t) and φ̇(t), Eqs. (35) and (37). The condi-
tions of joining the graphs at t = 0 are also the same. However, the conditions of periodicity at
the instants −T/2 and T/2 for resonances of even orders differ from Eqs. (38) by the opposite
sign. This yields, instead of Eq. (43), the following equation for the boundaries of instability
intervals:

(q + 1) sin(ωavT/2) = ±
√

(q − 1)2 sin2(∆ωT/4)− q(p+ 1/p− 2). (48)

For the interval of the 2nd order, we should search for its solution T in the vicinity of T0 ≈ Tav.
If for a given value of the quality factor Q (Q enters p = e−γT ) the depth of modulation ml

exceeds the threshold value, Eq. (48) has two solutions which correspond to the boundaries T−
and T+ of the instability interval. These solutions exist if the expression under the radical sign
in Eq. (48) is positive. Its zero value corresponds to the threshold conditions, that is, to (ml)min

for a given Q or Qmin for a given ml:

(q − 1)2

q
sin2(∆ωTav/4) =

(p− 1)2

p
. (49)

The threshold conditions fulfil at exact tuning to 2nd resonance, when T = Tav. To estimate
the threshold value of Q for small values of the modulation depth ml, we may assume here
q ≈ 1 + 3ml, sin(∆ωT/4) ≈ ∆ωT0/4, and ∆ω ≈ mlω0. On the right-hand side of Eq. (49),
in p = e−γT , we can consider γT ≈ γT0 = π/Q ≪ 1, so that p + 1/p − 2 = (p − 1)2/p ≈
(γT )2 = (π/Q)2. Thus, for the threshold of the 2nd parametric resonance we obtain:

Qmin ≈ 2

3m2
l

, (ml)min ≈
√

2

3Q
. (50)

To find the boundaries T− and T+ of the 2nd instability interval, we represent T in the
argument of the sine function on the left-hand side of Eq. (48) as Tav+∆T . Since ωavTav = 2π,
we can write this sine as − sin(ωav∆T/2). Then Eq. (48) becomes:

sin
ωav∆T

2
= ∓ 1

q + 1

√
(q − 1)2 sin2 ∆ω(Tav +∆T )

4
− q

(p− 1)2

p
. (51)
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This form of the equation is convenient for numerical solution by iteration. For the zero friction
p = 1, and Eq. (51) coincides with Eq. (33). To obtain an approximate solution to Eq. (51),
valid for small values of the modulation depth ml up to the terms of the second order of ml, we
can simplify the expression under the radical sign on the right-hand side of Eq. (51), assuming
q ≈ 1 + 3ml, (q − 1)2 ≈ (3ml)

2, and sin[∆ω(Tav + ∆T )/4] ≈ ∆ωTav/4 = πml/2. The last
term of the radicand can be represented as (2/3Q)2 ≈ (ml)

4
min. On the left-hand side the sine

can be replaced by its small argument, where ωav = 2π/Tav. Thus for the boundaries of the
second instability interval we get:

∆T

Tav

≈ ∓3

4

√
m4

l − (ml)4min, or T∓ =

(
1∓ 3

4

√
m4

l − (ml)4min

)
Tav. (52)
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