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Abstract
The simple derivation of the planetary orbit described recently by Bringuier is
related to previous publications in this journal that deal with the orbital motion
and circular hodograph in the velocity space.

Traditional derivations of a planetary orbit in the university courses of mechanics are based
usually on the conservation laws of the angular momentum and the total energy (see, for
example, [1]), or on a transformation of the differential equation of motion by introducing
another unknown function 1/r instead of r(θ) [2]. For most undergraduate students the
first way requires severe struggling through mathematics, while the second may seem rather
artificial.

In a recent contribution to this journal Bringuier [3] suggests a very laconic and elegant
way to the polar equation of the orbit, r = p/(1 + e cos θ). In this comment, we would like
to emphasize that the derivation described in [3] proves simultaneously the circularity of the
velocity hodograph for any orbit in an inverse square central field (the property not mentioned
in [3]), and relate the approach of [3] to the previous papers published in this journal that deal
with the orbital motion.

The derivation in [3] is rather straightforward. It starts with Newton’s law of motion for
v = dr/dt ,

dv

dt
= −GM

r2
ur , (1)

where ur = r/r is the unit radial vector (see the left-hand part of figure 1). Then r2 is
eliminated from equation (1) with the help of the angular momentum conservation L = mr2θ̇ ,
which yields the following equation:

dv

dt
= −GM

C
θ̇ur . (2)

Here a constant C = L/m = r2θ̇ is introduced whose meaning is the angular momentum
magnitude per unit mass, or the sectorial velocity doubled (C = 2 dS/dt).

The crucial point of the derivation is the substitution of duθ /dt in equation (2) instead
of −θ̇ur with subsequent straightforward integration with respect to time t, which gives the
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Figure 1. Keplerian orbit and the velocity vectors in space (left), and the hodograph of the velocity
vector in velocity space (right).

expression for vector v as the sum of two vectors:

v = GM

C
(uθ + e). (3)

The second term on the right-hand side of equation (3) (the constant of integration)
is a time-independent vector of magnitude (GM/C)e, while the first one is a vector of
constant magnitude (GM/C) pointing currently in the direction of the unit vector uθ , which
is perpendicular to the momentary radius vector r.

Equation (3), which is exactly equation (5) of [3], proves actually that the velocity
hodograph for an arbitrary Keplerian motion is a circle (see the right-hand side of figure 1).
Indeed, the unit vector uθ changes its direction as the body moves along its orbit, and hence
the vector (GM/C)uθ of fixed magnitude GM/C rotates (non-uniformly) in velocity space
about the point to which the constant vector (GM/C)e points. Since v is the sum of these
two vectors, its end generates the same circle (or an arc of the circle for hyperbolic orbits).
This statement is equally valid for all closed (elliptical) and open (parabolic and hyperbolic)
orbits traced under the inverse square central force.

A similar, although less straightforward derivation of the circular shape of the velocity
hodograph (based primarily on geometrical considerations) can be found in [4]. The velocity
vector of a body in an arbitrary Keplerian motion is represented in [4] also as the sum of
two vectors (v = u + w in the notation of [4]), one of which (w = (GM/C)e) points
always from the origin to the same point of velocity space (the centre of the hodograph),
while the other vector of a constant magnitude (u = (GM/C)uθ ) generates the circle. This
interesting property of an arbitrary Keplerian motion is very clearly illustrated by the simulation
program [6].

Equation (3) of this paper and equation (5) in [3] coincide with equation (3) of [5] also
derived in [5] from Newton’s second law and the conservation of angular momentum. The
mentioned equations in the cited papers differ only in notation. However, when the constant
component w of the velocity vector (that points to the centre of the hodograph) is denoted
by (GM/C)e (as in [3]), the magnitude e of vector e has the clear physical meaning of the
eccentricity of the orbit. This makes it reasonable to call e the eccentricity vector.

The constant magnitude GM/C of the other vector u = (GM/C)uθ (radius of the
circular hodograph) can be conveniently expressed in terms of velocity vP at the perihelion
(perigee) and the circular velocity vc = √

GM/rP for this point P of the orbit (see [6]):
u = GM/C = v2

c

/
vP . The displacement w of the hodograph centre from the origin of
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the velocity space can be expressed as vP − v2
c

/
vP or, equivalently, as w = ue, where the

eccentricity e = v2
P

/
v2

c − 1.
The last step, which allows us to obtain the orbit from equation (3), is rather obvious: it

consists in taking a projection of both sides of equation (3) on the direction of the unit vector
uθ . From the left-hand part of figure 1 we see that this projection of v equals rθ̇ or C/r (if
we take into account that r2θ̇ = C). The right-hand part of the figure shows that at the same
time this projection equals (GM/C)(1+e cos θ). Equating these values, we obtain the desired
equation of the orbit:

r = p

1 + e cos θ
, where p = C2

GM
= L2

GMm2
= rP (1 + e). (4)

The geometrical way from equation (3) to (4) described above, being equivalent to the
derivation in [3], may seem more natural to undergraduate students. We note that the same
idea is also used in [5].
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