
Spring Pendulum with Dry and Viscous Damping

Eugene I. Butikov
Saint Petersburg State University, Saint Petersburg, Russia

Abstract

Free and forced oscillations of a torsion spring pendulum damped by viscous and dry friction
are investigated analytically and with the help of numerical simulations. An idealized math-
ematical model is assumed (Coulomb law) which nevertheless can explain many peculiarities
in behavior of various oscillatory systems with dry friction. The amplitude of free oscillations
diminishes under dry friction linearly, and the motion stops after a final number of cycles. The
amplitude of sinusoidally driven pendulum with dry friction grows at resonance without limit if
the threshold is exceeded. At strong enough non-resonant sinusoidal forcing dry friction causes
transients that typically lead to definite limit cycles — periodic steady-state regimes of sym-
metric non-sticking forced oscillations which are independent of initial conditions. However,
at the subharmonic sinusoidal forcing interesting peculiarities of the steady-state response are
revealed such as multiple coexisting regimes of asymmetric oscillations that depend on initial
conditions. Under certain conditions simple dry friction pendulum shows complicated stick-slip
motions and chaos.

Keywords: dry friction, dead zone, sinusoidal forcing, resonance, threshold, steady-state
regime, asymmetric oscillations

1. Introduction

Mechanical vibration systems with combined viscous and dry (Coulomb) friction are of
considerable importance in numerous applications of dynamics in engineering. When friction
is viscous, the spring oscillatory systems are described by linear differential equations. This
case allows an exhaustive explicit analytical solution which is usually studied in undergradu-
ate courses at universities and can be found in most textbooks on general physics. However,
the influence of dry friction on oscillatory systems remains as a rule beyond the scope of the
academic literature and traditional physics courses.

Dry friction results in a nonlinearity. With dry friction, the system acquires a non-smooth,
discontinuous nonlinear character. If the coefficient of dry friction is sufficiently small, the
oscillating body slides under harmonic forcing and its velocity is zero only for the instants
at which the direction of motion reverses. This kind of motion of dry friction oscillator with
no stick phase is usually referred to as a pure slip (non-sticking) motion. At strong enough
dry friction sticking may occur: the body remains at rest for a finite time during the driving
cycle after its velocity reaches zero. A detailed historical review on dry friction and stick-slip
phenomena can be found in [1].

Dry friction as a nonlinearity is the current focus of research activities. Even the simplest
dry friction model, the Coulomb friction, can explain the principal peculiarities in motion of dry
friction oscillator. Damping of free oscillations under dry friction is very clearly described in the
textbook of Pippard [2] (see also [3]). Different approaches to the problem are discussed in [4]–
[5]. Den Hartog [6] was first to solve in 1930 the periodic sliding response of a harmonically
forced oscillator with both viscous and dry-friction damping. Later on the analytical solutions of
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non-sticking responses were widely discussed in the contemporary scientific literature (see [7]–
[14] and references therein). The problem was treated by using a number of various analytical
and numerical techniques. In recent years, there has been an increasing interest in periodic
and chaotic motions of discontinuous dynamical systems because of their important role in
engineering (see, for example, [15]).

In the literature the analytical solution to the problem of oscillations in a system with dry
friction is usually obtained by a simple method of stage-by-stage integration of the differential
equations which describe the system. These equations are linear for the time intervals occur-
ring between consecutive turning points, if the simplest (Coulomb) model is assumed for dry
friction. The intervals are bounded by the instants at which the velocity is zero. The complete
solution is obtained by fitting these half-cycle solutions to one another for adjoining time in-
tervals. By virtue of the piecewise linear nature of the relevant differential equations, explicit
solutions can be found for the time intervals between the successive turnarounds.

In our approach to the problem we try to rely primarily on the physics underlying the in-
vestigated phenomena. In this paper we are concerned with free oscillations of a torsion spring
pendulum, and with forced oscillations of the pendulum kinematically driven by an external
sinusoidal force, including cases of damping caused by dry (Coulomb) friction, and both by
viscous and dry friction. Mathematically, the pendulum driven by an external force is equiva-
lent to the spring-mass system with the body residing on the horizontally oscillating base. The
simple formulae of analytical solutions are confirmed by graphs obtained in computer simula-
tions. New results are related with quantitative description of the resonant growth of oscillations
under sinusoidal forcing, and with closed-form analytical solutions at sub-resonant frequencies.
These solutions correspond to multiple asymmetric steady-state regimes coexisting at the same
values of the system parameters. Characteristics of such regimes depend on the initial con-
ditions. Our analytical and numerical solutions are illustrated by a simplified version of the
relevant simulation program (Java applet) available on the web [16].

2. The physical system

The rotating component of the torsion spring oscillator investigated in the paper is a bal-
anced flywheel whose center of mass lies on the axis of rotation (Fig. 1), similar to devices
used in mechanical watches. A spiral spring with one end attached to the flywheel flexes when
the flywheel is turned. The other end of the spring is attached to the exciter — a driving rod,
which can be turned by an external force about the axis common with the flywheel axis. The
spring provides a restoring torque whose magnitude is proportional to the angular displacement
of the flywheel relative to the driving rod. In other words, we assume that the flywheel is in
equilibrium (the spring is unstrained) when the rod of the flywheel is parallel to the driving rod.

In the case of unforced (free, or natural) oscillations in an isolated system, the motion is
initiated by an external influence which occurs before a particular instant. This influence deter-
mines the initial mechanical state of the system, that is, the displacement and the velocity of the
oscillator at the initial instant. These initial conditions determine the amplitude and phase of
subsequent free oscillations. The frequency and damping rate of free oscillations are determined
solely by the physical properties of the system, and do not depend on the initial conditions.

Oscillations are called forced if an oscillator is subjected to an external periodic influence
whose effect on the system can be expressed by a separate term, a periodic function of the
time, in the differential equation of motion. We are interested in the response of the system
to the periodic external force. The behavior of oscillatory systems under periodic external
forces is one of the most important issues in the theory of oscillations. A noteworthy distinctive
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Figure 1: Schematic diagram of the driven torsion oscillator with dry friction

characteristic of forced oscillations is the phenomenon of resonance, in which a small periodic
disturbing force can produce an extraordinarily large response in the oscillator. Resonance is
found everywhere in physics and so a basic understanding of this fundamental problem has wide
and various applications. The phenomenon of resonance depends upon the whole functional
form of the driving force and occurs over an extended interval of time rather than at some
particular instant. In this paper we draw attention to peculiarities of resonance in an oscillator
with dry friction.

In our model of an oscillatory system, free oscillations of the flywheel occur when the
driving rod is immovable (θ = 0). Forced oscillations are excited when the driving rod rotates
back and forth sinusoidally about its middle position θ = 0 between the angles −θ0 and θ0 (see
Fig. 1): θ(t) = θ0 sinωt. This mode differs from the dynamical mode considered usually in
textbooks, according to which oscillations are excited by a given external force exerted on the
system. Our mode can be called kinematical, because in this mode oscillations are excited by
forcing one part of the system (the driving rod) to execute a given motion (in our case a simple
harmonic motion). This kinematical mode is especially convenient for observation, because the
motion of the exciter can be seen simultaneously with oscillations of the flywheel.

In the Coulomb model of dry friction, as long as the system is moving, the magnitude of
dry friction is assumed to be constant, and its direction is opposite that of the velocity, that is,
its direction changes each time the direction of the velocity changes. When the system is at
rest, the force of static dry friction takes on any value from some interval −Fmax to Fmax. The
actual value of static frictional force can be found from the requirement of balancing the other
forces exerted on the system. In other words, the force of static friction adjusts itself to make
equilibrium with other external forces acting on the body. The magnitude of the force of kinetic
dry friction is assumed in this model to be equal to the limiting force Fmax of static friction.

In real physical systems dry friction is characterized by more complicated dependencies
on the relative velocity (see, for example, [17]). The limiting force of static friction is usually
greater than the force of kinetic friction. When the speed of a system increases from zero, kinetic
friction at first decreases, reaches a minimum at some speed, and then gradually increases with
a further increase in speed. These peculiarities are ignored in the idealized z-characteristic of
dry friction. Nevertheless, this idealization allows us to understand many important features of
oscillations in real physical systems.

In our model of a torsion oscillator some amount of dry friction can exist in the bearings
of the flywheel axis. Because the magnitude of static frictional torque can assume any value
up to Nmax, there is a range of values of angular displacement called the stagnation interval or
dead zone in which static friction can balance the restoring elastic torque of the strained spring.
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At any point within this interval the system can be at rest in a state of neutral equilibrium, in
contrast to a single position of stable equilibrium provided by the spring in the case of oscillator
with viscous friction.

The stagnation interval extends equally to either side of the point at which the spring is un-
strained. The stronger the dry friction in the system, the more extended the stagnation interval.
The boundaries of the interval ±d are determined by the limiting torque Nmax of static friction.
In Fig. 1 these boundaries −b and +b are shown for the case in which the driving rod is in its
middle position θ = 0.

3. The differential equation of the oscillator

The rotating flywheel of the torsion oscillator is simultaneously subjected to the restoring
torque −D(φ − θ) produced by the spring, the torque −Bφ̇ of viscous friction which is pro-
portional to the angular velocity, and the torque Nfr of kinetic dry friction. When the exciter is
forced to move periodically according to θ(t) = θ0 sinωt, the differential equation describing
the rotational motion of the flywheel with the moment of inertia J is thus

Jφ̈ = −D(φ− θ0 sinωt)−Bφ̇+Nfr. (1)

The torque Nfr is directed oppositely to angular velocity φ̇, and is constant in magnitude while
the flywheel is moving, but may have any value in the interval from −Nmax up to Nmax while
the flywheel is at rest:

Nfr(φ̇) = −Nmax sign φ̇ =

{
−Nmax for φ̇ > 0,
Nmax for φ̇ < 0.

(2)

Here Nmax is the limiting value of the static frictional torque. It is convenient to express the
value Nmax in terms of the maximal possible deflection angle d of the flywheel at rest, when the
driving rod (see Fig. 1) is immovable at its middle position θ = 0: Nmax = Dd. The angle d
corresponds to the boundary of the stagnation interval. Dividing all terms of equation (1) by J ,
we get

φ̈+ 2γφ̇+ ω2
0d sign φ̇+ ω2

0φ = ω2
0θ0 sinωt. (3)

The damping constant γ is a measure of the intensity of viscous friction. It is introduced here
by the relation 2γ = B/J . The frequency ω0 =

√
D/J characterizes undamped natural oscil-

lations. The sign φ̇ function is meant to take the undetermined values between 1 and −1 at zero
argument, which corresponds to stick phase. The actual value of the static dry friction torque
is such that the system is in equilibrium. The differential equation (1) for an oscillator with
dry friction, as well as equation (3), is nonlinear because the torque Nfr(φ̇) abruptly changes
when the sign of φ̇ changes at the extreme points of oscillation. This is the so-called Filippov
system [18]. In the idealized case of the z-characteristic this is a piecewise smooth system, and
we may consider the following two linear equations instead of Eq. (3):

φ̈+ 2γφ̇+ ω2
0(φ+ d) = ω2

0θ0 sinωt for φ̇ > 0, (4)

φ̈+ 2γφ̇+ ω2
0(φ− d) = ω2

0θ0 sinωt for φ̇ < 0. (5)

Whenever the sign of the angular velocity φ̇ changes, the pertinent equation of motion also
changes. The nonlinear character of the problem reveals itself in alternate transitions from one
of the linear equations (4)–(5) to the other.
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4. Damping of free oscillations under dry friction

For the case of free (unforced) oscillations the right-hand side of equations (4)–(5) is zero.
In case the dry friction is absent (the dead zone vanishes: d = 0), damping of free oscillations
occurs solely due to viscous friction. For this idealized case the differential equation of motion
becomes linear. It has a well known analytical solution, according to which the amplitude of free
oscillations under viscous friction decreases exponentially with time. That is, the consecutive
maximal deflections of the oscillator from its equilibrium position form a diminishing geometric
progression because their ratio is constant.

In an idealized linear system such oscillations continue indefinitely, their amplitude asymp-
totically approaching zero. The duration of exponential damping can be characterized by a
conventional decay time τ = 1/γ. The exponential character of damping caused by viscous
friction follows from the proportionality of friction to velocity. Some other relationship be-
tween friction and velocity produces damping with different characteristics.

The solution to equations (4)–(5) for non-zero dry friction (d ̸= 0) can be found by using
the method of the stage-by-stage integration of each of the linear equations for the half-cycle
during which the direction of motion is unchanged. These solutions are then joined together
at the instants of transition from one equation to the other in such a way that the displacement
at the end point of one half-cycle becomes the initial displacement at the beginning of the next
half-cycle. This array of solutions continues until the end point of a half-cycle lies within the
dead zone.

An important feature of free oscillations damped by dry friction is that the motion com-
pletely ceases after a finite number of cycles. As the system oscillates, each subsequent change
of its velocity occurs at a smaller displacement from the mid-point of the stagnation interval.
Eventually the turning point of the motion occurs within the stagnation interval, where static
friction can balance the restoring torque of the spring, and so the motion abruptly stops. At
which point of the interval this event occurs, depends on the initial conditions, which may vary
from one situation to the next.

These characteristics are typical of various mechanical systems with dry friction. For ex-
ample, dry friction may be encountered in measuring instruments, such as a moving-coil gal-
vanometer, in which readings are taken with a needle. The needle of the coil may come to rest
at any point of the stagnation interval on either side of the dial point which gives the true value
of the measured quantity. This circumstance explains the origin of random errors inevitably
occurring in the readings of moving-coil measuring instruments. The larger the dry friction, the
larger the errors of measurement.

In order to find the fundamental characteristics of oscillations which are damped under the
action of dry friction, next we assume that viscous friction is absent (γ = 0).
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Figure 2: Phase trajectory (left) and graphs of φ(t) and φ̇(t) (right) for oscillations whose damping occurs under
dry friction
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At the initial instant t = 0, let the flywheel be displaced to the right (clockwise) from the
equilibrium position so that φ(0) > 0, and then released without a push. In the phase plane
shown in the left-hand part of Fig. 2 this initial state is represented by the point which lies to
the extreme right on the horizontal axis, the φ-axis. If this displacement exceeds the boundary
of the stagnation interval, i.e., if φ(0) > d, the flywheel begins moving to the left (φ̇ < 0) and
its motion is described by equation φ̈ + ω2

0(φ − d) = 0. The solution to this equation with the
given initial conditions (φ(0) = φ0, φ̇(0) = 0) is simple harmonic motion whose frequency
is ω0. The midpoint of the motion is d. This point coincides with the right-hand boundary of
the stagnation interval. The displacement d of the midpoint from zero is caused by the constant
torque of kinetic friction. This torque is directed to the right (clockwise) while the flywheel is
moving to the left. The initial segment of the φ(t) graph in the right-hand part of Fig. 2 is the
first half-cycle of the cosine curve, whose midpoint is at a height of d above the abscissa axis.
The amplitude of this oscillation about the midpoint d is φ0 − d. The corresponding portion
of the phase trajectory lies below the horizontal axis. This curve is the lower half of an ellipse
whose center is at the point d on the horizontal axis. This point corresponds to the right-hand
boundary of the stagnation interval.

Since the amplitude of the first half-cycle is φ0− b, the extreme left position of the flywheel
at the end of the half-cycle is −(φ0−2b). When the flywheel reaches this position, its velocity is
momentarily zero, and it starts to move to the right. Since its angular velocity φ̇ is subsequently
positive, we must now consider equation φ̈ + ω2

0(φ + d) = 0. The values of φ and φ̇ at the
end of the preceding half-cycle are taken as the initial conditions for this half-cycle. Thus the
subsequent motion is again a half-cycle of harmonic oscillation with the same frequency ω0 as
before but with the midpoint −d displaced to the left, i.e., with the midpoint at the left-hand
boundary of the stagnation interval. This displacement is caused by the constant torque of
kinetic friction, whose direction was reversed when the direction of motion was reversed. The
amplitude of the corresponding segment of the sine curve is φ0 − 3d. In the phase plane this
stage of the motion is represented by half an ellipse lying above the φ-axis. The center of this
second semi-ellipse is at the point −d on the φ-axis.

Continuing this analysis half-cycle by half-cycle, we see that the flywheel executes har-
monic oscillations about the midpoints alternately located at d and −d. The frequency of
each cycle is the natural frequency ω0, and so the duration of each full cycle equals the pe-
riod T0 = 2π/ω0 of free oscillations in the absence of friction. The complete phase trajectory
is formed by such increasingly smaller semi-ellipses, alternately centered at d and −d. The di-
ameters of these consecutive semi-ellipses lie along the φ-axis and decrease each half-cycle by
2d. The loops of the phase curve are equidistant. The phase trajectory terminates on the φ-axis
at the point at which the curve meets the φ-axis inside the dead zone (between −d and d).

The joining together of these sinusoidal segments, whose midpoints alternate between the
boundaries of the stagnation interval, produces the curve that describes oscillatory motion
damped by dry friction (Fig. 2). The maximal deflection decreases after each full-cycle of
these oscillations by a constant value equal to the doubled width of the stagnation interval (i.e.,
by the value 4d). The oscillation continues until the end point of some next in turn segment of
the sine curve occurs within the dead zone (−d, d).

Thus, in the case of dry friction, consecutive maximal deflections diminish linearly in a de-
creasing arithmetic progression, and the motion stops after a final number of cycles, in contrast
to the case of viscous friction, for which the maximal displacements decrease exponentially in
a geometric progression, and for which the motion continues indefinitely.

Energy transformations in free oscillations damped by dry friction are shown in Fig. 3.
While the flywheel is rotating in one direction, the torque Nmax of kinetic friction is constant,
and the total energy Etot(φ) of the oscillator decreases linearly with the angular displacement,
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Figure 3: Energy transformations in free oscillations damped by dry friction

φ, of the flywheel. This linear dependence of the total energy on φ is clearly indicated in
the left-hand part of Fig. 3, where the parabolic potential well of the elastic spring is shown.
A representing point whose ordinate gives the total energy Etot(φ) and whose abscissa gives
the angular displacement of the flywheel, oscillates with time between the slopes of this well,
gradually descending to the bottom of the well. The trajectory of this point consists of rectilinear
segments joining the slopes of the well. These segments are straight because the negative work
done by the force of dry friction is proportional to the angle of rotation, ∆φ. The amount of
this work |Nmax∆φ| equals the decrease −∆Etot of total energy.

The time rate of dissipation of the total energy, −dEtot/dt, is proportional to the magnitude
of the angular velocity, |φ̇(t)|. Thus, the greatest rate of dissipation of mechanical energy
through friction occurs when the magnitude of the angular velocity, φ̇, is greatest, that is, when
the flywheel crosses the boundaries of the dead zone. Near the points of extreme deflection,
where the angular velocity is near zero, the time rate of dissipation of mechanical energy is
smallest (right-hand part of Fig. 3). Unlike the case of viscous friction, the oscillator with dry
friction may retain some mechanical energy Efin at the termination of the motion. Such occurs
if the final angular displacement (within the dead zone) is not at the midpoint of the stagnation
interval. Then the spring remains strained, and its elastic potential energy is not zero. The
remaining energy does not exceed the value Dd2/2 = Nmaxd/2.

When the initial excitation is large enough, that is, when the initial energy is much greater
than Dd2/2, the oscillator executes a large number of cycles before the oscillations cease. In
this case it is reasonable to consider the total energy averaged over a period of the oscillation,
⟨Etot(t)⟩. The decrease of ⟨Etot(t)⟩ during a large number of cycles depends quadratically on
the lapse of time because the amplitude of oscillation decreases linearly with time and because
the averaged total energy is proportional to the square of the amplitude. If tfin is the final moment
when oscillations cease, then at the time t the averaged total energy ⟨Etot(t)⟩ is proportional to
(t − tfin)

2. This statement (which clearly applies only for t < tfin) is exactly true only when
the flywheel comes to rest at the center of the stagnation interval. However, even if such is not
the case and there is a residual potential energy stored in the spring after the motion ceases, the
statement is approximately true.

In systems with both dry and viscous friction the damping of oscillations can also be inves-
tigated by the stage-by-stage solving of the equations of motion and by using the mechanical
state at the end of the previous half-cycle as the initial conditions for the next in turn half-cycle.
The phase trajectory consists in this case of the shrinking alternating halves of spiral loops that
are characteristic of a linear damped oscillator. The focal points of these spirals alternate be-
tween the boundaries of the stagnation interval. The loops of the phase trajectory are no longer
equidistant. Nevertheless their shrinking does not last indefinitely: the phase trajectory in this
case also terminates after some finite number of turns around the origin when it reaches the
stagnation interval on the φ-axis.
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To figure out the relative importance of viscous versus dry friction, we can compare the
decrease in amplitude caused by each of these effects during one complete cycle. It was estab-
lished above that under the action of dry friction this decrease equals the constant value of the
doubled width of the stagnation interval 4d. On the other hand, viscous friction decreases the
amplitude of the oscillation during a complete cycle by an amount which is proportional to the
amplitude. Indeed, for γT0 ≪ 1, i.e., for rather large values of the quality factor Q = 2ω0/γ,
expression for the decrease ∆a during one period T0 in the momentary amplitude a due to
viscous friction can be written approximately as follows:

∆a = a(1− e−γT0) ≈ aγT0 = aγ
2π

ω0

=
πa

Q
. (6)

Equating ∆a to the doubled width 4d of the stagnation interval, we find the amplitude ã which
delimits the predominance of one type of friction over the other:

ã =
4d

γT0
=

4

π
Qd ≈ Qd. (7)

If the actual amplitude is greater than ã, the effect of viscous friction dominates. Conversely, if
the actual amplitude is less than ã, the effect of dry friction dominates.

When the initial excitation of the oscillator is great enough, the amplitude may exceed the
value ã ≈ Qd. In this instance, the initial damping of the oscillations is influenced mainly by
viscous friction, and the decrement in the width of several initial loops of the phase trajectory
(caused by viscous friction) is greater than the separation of the centers of adjoining half-loops
(i.e., the decrement exceeds the width of the stagnation interval). It is clear that in this case the
shrinking of the spiral caused by viscous friction is more influential in showing the effects of
damping than is the alternation of the centers of half-loops caused by dry friction.

When the value of a falls below that of ã (when a < ã ≈ Qd), the effects of dry friction
dominate. In the phase plane this dominance produces a trajectory of consecutive half-loops
whose centers alternately jump between the ends of the stagnation interval, −d and d, until the
phase trajectory reaches the segment of the φ-axis in the stagnation interval.

If viscous friction is strong, that is, if γ > ω0, and if the initial displacement of the flywheel
φ(0) lies beyond the boundaries of the stagnation interval, |φ(0)| > d, the released flywheel
moves without oscillating toward the nearest boundary of the stagnation interval. At this point
the flywheel stops turning.

5. Resonance in the oscillator with dry friction under sinusoidal excitation

In this section we analyze forced oscillations of the torsion spring pendulum in conditions
of resonance, that is, when the frequency of excitation ω equals natural frequency ω0 of the
oscillator (T = T0 = 2π/ω0). Generally at large enough dry friction sticking may occur:
the flywheel remains at rest for a finite time after the velocity reaches zero. However, if the
amplitude of excitation θ0 in equations (4)–(5) exceeds some threshold value, the motion of the
flywheel is purely sliding (non-sticking), and in the absence of viscous friction the amplitude of
oscillations grows indefinitely. An example of such resonant oscillations is shown in Fig. 4. The
phase trajectory and the graphs of φ(t) and φ̇(t) are obtained by computer simulation which is
based on numeric integration of equations (4)–(5). We note the linear growth of the amplitude:
the succession of maximal deflections of the flywheel forms an arithmetic progression. Next
we find analytically the threshold for excitation of such growing oscillations, and calculate the
increment of the amplitude after each driving cycle.
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Figure 4: Phase trajectory with Poincaré sections (left) and graphs of φ(t) and φ̇(t) (right) for oscillations at
resonance with dry friction

We choose for simplicity the initial deflection φ(0) of the flywheel coinciding with the left
boundary of the dead zone, that is, φ(0) = −d, and initial angular velocity zero: φ̇(0) = 0.
Such initial conditions provide the sliding (non-sticking) motion from the very beginning with
two turnarounds during each cycle of excitation. During the first half of the excitation period
(0 < t < T0/2) the angular velocity is positive (φ̇(t) > 0), and we should use equation (4). The
solution to this equation (with γ = 0), satisfying the above indicated initial conditions, can be
written as follows:

φ(t) = −1

2
θ0(ω0t cosω0t− sinω0t)− d, φ̇(t) =

1

2
θ0ω

2
0t sinω0t, 0 < t < T0/2. (8)

According to (8), next maximal elongation to the right side occurs at t = T0/2 and equals
1
2
πθ0 − d. This elongation is greater in magnitude than the preceding (initial) elongation d to

the left side by 1
2
πθ0 − 2d.

To find the increment in the amplitude during the second half-cycle of excitation, when the
flywheel rotates in the opposite direction, we should use equation (5). An analytical solution
to this equation is given in the Appendix. It occurs that the increment in amplitude during the
second half-cycle is the same as during the first half-cycle. Therefore during the whole cycle
the increment in amplitude equals πθ0 − 4d. Specifically, for θ0 = 25◦ and d = 15◦ (the values
corresponding to the simulation shown in Fig. 4) the amplitude should increase during each
cycle by 18.54◦. The simulation in Fig. 4 shows that during the first six cycles the amplitude
increased by 126◦ − 15◦ = 111◦, which gives for increment during one cycle the value 18.5◦ in
a good agreement with the theoretical prediction.

The growth of oscillations amplitude occurs if the value of increment πθ0 − 4d during a
cycle of excitation is positive. Hence the threshold of resonance (θ0)min for the oscillator with
dry friction is given by the following condition:

θ0 >
4

π
d, (θ0)min =

4

π
d. (9)

For given width d of the dead zone (for given dry friction) equation (9) defines the critical
(minimal) value (θ0)min of the drive amplitude which provides non-sticking forced oscillations
of the flywheel after a rather short transient. During the transient, depending on the initial
conditions, sticking is possible. For θ0 > (θ0)min, after the transient is over, at the initial moment
tn = nT = nT0 of each in turn cycle of excitation angular velocity φ̇(tn) of the flywheel is
zero: φ̇(nT ) = 0. This means that Poincaré sections in the phase plane (corresponding to time
moments tn = nT ) approach the abscissa axis during the transient and remain on its negative
side further on. Since the increment in the elongation is the same for each cycle, the points of
Poincaré sections on the axis are equidistant (see Fig. 4).
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Figure 5: Oscillations at the threshold conditions at resonance with dry friction

Stationary periodic oscillations at the threshold conditions are shown in Fig. 5. At arbitrary
initial values of φ and φ̇ the phase trajectory approaches eventually a limit cycle similar to the
cycle shown in the left-hand side of Fig. 5. The amplitude of steady-state forced oscillations at
the threshold depends on initial conditions. If initial velocity is zero (φ̇(0) = 0), steady-state
oscillations occur from the very beginning, without any transient, in case initial displacement
φ(0) is negative and lies beyond the dead zone, that is, if φ(0) < 0, |φ(0)| ≥ d. The amplitude
of these oscillations equals |φ(0)|. This mode of oscillations is unstable with respect to varia-
tions in parameters θ0 and d: a slight increment of the drive amplitude or decrement in the dead
zone width causes an indefinite growth of the amplitude.

If the amplitude of the exciter θ0 is smaller than the critical value (θ0)min given by equa-
tion (9), but greater than the dead zone width d, a steady-state regime with two sliding phases
and two sticking phases establishes after the transient is over. For θ0 smaller than the dead zone
width d, the flywheel, depending on the initial conditions, either remains immovable from the
very beginning, or makes several movements with sticking and then finally stops at some point
of the dead zone.

The resonant growth of amplitude over the threshold is restricted if some amount of vis-
cous friction is present in the system. In a dual-damped system steady-state oscillations with a
constant amplitude eventually establish for arbitrary initial conditions. An example of resonant
oscillations in the system with both dry and viscous friction is shown in Fig. 6. Equations (4)–
(5) allow us to calculate the amplitude a of such resonant symmetric steady-state oscillations.
We choose the time origin t = 0 at the beginning of the next in turn drive cycle. At this moment
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Figure 6: Oscillations at resonance with dry and viscous friction

the flywheel occurs at the extreme displacement to the left side (φ(0) = −a) and has the angular
velocity zero (φ̇(0) = 0). During the first half-cycle of the drive (0 < t < T0/2) it moves to
the right, so that φ̇ is positive during this interval. Therefore we should use equation (4) with
ω = ω0 in its right-hand part. It is convenient to introduce instead of φ(t) a new unknown
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function ψ(t) = φ(t) + d, which, according to (4), satisfies the following equation:

ψ̈ + 2γψ̇ + ω2
0ψ = ω2

0θ0 sinω0t. (10)

We can search for its periodic partial solution in the form ψ(t) = A cosω0t. This function
satisfies equation (10), if A = −(ω0/2γ)θ0 = −Qθ0. Next we add to this partial solution the
general solution of the corresponding homogeneous equation:

ψ(t) = −Qθ0 cosω0t+ (C cosω0t+ S sinω0t) exp(−γt). (11)

It follows from the initial condition ψ̇(0) = 0 that in (11) S = (γ/ω0)C. To find C, we
require that in the steady-state symmetric regime elongations to both sides should be equal:
φ(0) = −φ(T0/2). From this condition we get

C =
2d

1− exp(−γT0/2)
=

2d

1− exp(−π/2Q)
. (12)

Substituting theseC and S values in equation (11), we obtain the time dependence of the angular
displacement φ(t) = ψ(t)− d for the first half-cycle of excitation. The desired amplitude a of
this steady-state resonant oscillation is given by −φ(0):

a = Qθ0 − d

(
2

1− exp(−π/2Q)
− 1

)
≈ Q

(
θ0 −

4d

π

)
. (13)

The latter approximate expression is valid in case of rather weak viscous friction, when Q≫ 1.
In the absence of dry friction (at d = 0) the growth of amplitude at resonance is restricted
due to viscous friction by the value Qθ0, which is Q times greater than the amplitude of the
driving rod θ0, in accordance with the first term in equation (13). With dry friction, the steady-
state amplitude is approximately Q times greater than the excess of the drive amplitude θ0 over
the threshold 4d/π. We emphasize that dry friction alone is unable to restrict the growth of
amplitude over the threshold at ω = ω0. Nevertheless, equation (13) shows that when dry
friction is added to the system with viscous friction, the steady-state amplitude at resonance
is smaller than Qθ0. From the numerical simulation (Fig. 6) we see that with θ0 = 15◦ and
Q = 10 the resonant amplitude equals only 86.3◦, if the dead zone d equals 5◦ (compare with
Qθ0 = 150◦ at d = 0). This experimental value 86.3◦ is in a good agreement with the theoretical
result expressed by (13), according to which the steady-state amplitude should be 86.2◦.

In conditions of exact tuning to resonance (at ω = ω0) the energy is transferred to the os-
cillator from the external source (from the exciter) with maximal efficiency, if at the beginning
of each excitation cycle the flywheel occurs at an extreme elongation to the left-hand side. In-
deed, in this case the sinusoidally varying external torque exerted on the flywheel by the exciter
acts during the whole cycle in the direction of the flywheel rotation, and over the threshold
(at πθ0 > 4d) overcomes the torque of dry friction: the amplitude grows linearly (see Fig. 4)
increasing during a cycle by πθ0 − 4d. On the contrary, if at the beginning of the excitation
cycle the flywheel occurs at an extreme elongation to the right-hand side, the external torque
of the spring during the whole cycle is directed against the flywheel’s angular velocity together
with the frictional torque. In this case the amplitude reduces during each cycle by the amount
πθ0 + 4d. After the amplitude reduces to zero, the phase relations between the flywheel and
exciter change to the opposite and become favorable for the transfer of energy to the oscillator:
the amplitude begins to grow.

An example of such behavior is shown in Fig. 7. At the drive amplitude θ0 = 6.366◦ and
the dead zone 2.5◦, the amplitude linearly reduces during each cycle of the initial stage of the
process by πθ0+4d = 30◦. After 3 full driving cycles the amplitude diminishes from initial 90◦

to zero. During the further resonant growth the amplitude linearly increases during each cycle
by πθ0 − 4d = 10◦, and after next 9 cycles becomes 90◦.
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Figure 7: Phase diagram with Poincaré sections and graph of φ(t) of oscillations with dry friction at resonance
with initial deflection φ(0) = +90◦

6. Non-resonant forced oscillations

In the case of exact tuning to resonance, in contrast to the oscillator with viscous damping,
dry friction alone is unable to restrict the growth of the amplitude of forced oscillations over the
threshold. In non-resonant cases (ω ̸= ω0) of harmonic excitation, after a transient of a finite
duration, steady-state oscillations of constant amplitude can establish due to dry friction even in
the absence of viscous friction. Non-resonant forced oscillations in the oscillator with dry fric-
tion received significant attention in the literature. Since the pioneer’s work of Den Hartog [6]
in 1930, several researchers [7]–[11] investigated the system analytically and numerically, and
obtained exact solutions, describing the steady-state non-sticking motion with two turnarounds
of per cycle for a harmonically excited dry friction oscillator.
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Figure 8: Phase diagram and graphs of φ(t) and φ̇(t) of non-sticking steady-state oscillations with dry friction at
ω = 0.7ω0

An example of such non-resonant oscillations in the system with considerable amount of dry
friction is shown in Fig. 8. The periodic motion consists of two non-sticking phases of equal
duration T/2. The angular velocity is negative in one phase and positive in the other. Unfortu-
nately, it is impossible to express φ(t) in a closed analytical form, because the turnaround points
dividing the two phases are determined by a transcendental equation. To find the amplitude
a(ω) of this symmetric oscillation, it is sufficient to consider only one phase between succes-
sive turnarounds, which is described by differential equation (5). The calculations are similar
to those above described for the resonant case (though more complicated). Using periodicity
and symmetry of the desired solution, we find the following dependence of the steady-state
amplitude on the driving frequency ω and amplitude θ0 = 45◦ of the excitation:

a(ω) = θ0

√
1

(1− ω2/ω2
0)

− d2(ω0/ω)2 sin
2 π(ω0/ω)

θ20(cos π(ω0/ω) + 1)2
. (14)
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For the frequency of excitation ω = 0.7ω0, drive amplitude θ0 = 45◦, and dead zone d = 20◦

we get from (14) for the steady-state amplitude the value 80.63◦, which is in perfect agreement
with the numerical simulation illustrated by Fig. 8.
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Figure 9: Amplitude–frequency characteristics of sinusoidally driven spring oscillator with dry friction damping

Expression (14) for the steady-state amplitude of non-sticking oscillations coincides (in
somewhat different notations) with results published earlier in the literature [7], [11]. Frequency-
response resonant curves (amplitude-frequency characteristics) given by (14) for the oscillator
with dry friction are shown in Fig. 9 for several values of relative width d/θ0 of the dead zone
(in the frequency region ω > 0.5ω0). We emphasize that expression (14) is valid only for sliding
(non-sticking) symmetric motions of the oscillator. Such motions are possible if the following
simple implicit condition (see [7]) on the parameters is fulfilled:

a(ω, θ0, d) ≥
d

θ0

(ω0

ω

)2

. (15)

Solving equation (15) numerically for the unknown d at ω = 0.7ω0 and θ0 = 45◦ (these val-
ues were used for the simulation shown in Fig. 8), we find that the maximal width dmax of the
dead zone for which steady-state non-sticking symmetric motions are possible equals 32.5◦.
A closed-form formula for the domain of steady-state symmetric non-sticking oscillatory re-
sponses was obtained in [8]. It provides the minimum driving torque amplitude (θ0)min required
to prevent sticking for given width d of the dead zone and given drive frequency ω:

(θ0)min = d

√(
ω2
0

ω2
− 1

)2 [
1 +

(ω/ω0)2 sin
2(πω0/ω)

(1 + cos(πω0/ω)2

]
. (16)

Certainly, this equation can be used also to find the maximal width dmax of the dead zone
for which steady-state non-sticking symmetric motions are possible at given frequency ω and
amplitude θ0 of the driving torque. Substituting ω = 0.7ω0 and θ0 = 45◦ in (16), we get
dmax = 32.5◦, in accordance with the above estimate (15).

The upper part of Fig. 10 illustrates oscillations occurring on this edge of such non-sticking
regime (dead zone 32.5◦). For initial conditions φ(0) = 0, φ̇(0) = 0, sticking occurs several
times during a short transient which ends with a non-sticking symmetric steady-state oscilla-
tions. According to (14), their amplitude must equal 66.3◦, in good agreement with the simula-
tion. For comparison, the lower part of Fig. 10 shows the steady-state oscillations at the same
values of the frequency and amplitude of the exciter (ω = 0.7ω0 and θ0 = 45◦), but for a some-
what greater dry friction (dead zone 37◦). In this case sticking occurs twice during each cycle
of excitation. Not surprisingly that the amplitude of steady-state symmetric forced oscillations
with sticking observed in the simulation is smaller than equation (14) predicts (55◦ against 62◦).
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Figure 10: Phase diagram and graphs of φ(t) and φ̇(t) of the transient that leads to non-sticking steady-state
oscillations at ω = 0.7ω0 and critical width d = 32.5◦ of the dead zone (upper part), and steady-state symmetric
oscillations with sticking at d = 37◦ (lower part)

7. Harmonic excitation at sub-resonant frequencies

Generally characteristics of steady-state behavior of the periodically forced oscillator with
dry friction, as well as of the oscillator with viscous friction, are uniquely defined by the sys-
tem parameters, and by the frequency and amplitude of the excitation. Certain exceptions are
revealed if the frequency ω of sinusoidal excitation coincides with one of subharmonics of the
natural frequency: ω = ω0/n, where n is an integer number. Analytical steady-state solutions
at sub-harmonic excitation were considered for the first time in [12]. In the present paper we
suggest a simpler and physically more transparent approach to the problem, and discuss pe-
culiarities of such oscillations in more detail. Simple closed-form solutions are illustrated by
time-dependent graphs and phase orbits obtained with the help of computer simulations.

According to equation (14), at frequencies of excitation ω = ω0/2, ω = ω0/4, . . . the
amplitude of steady-state non-sticking symmetric oscillation, independently of the dead zone
width d, should be equal to the amplitude of forced steady-state oscillation in the absence of
friction (that is, at d = 0): a(ω) = θ0/(1− ω2/ω2

0). (Certainly, this arbitrary value of d should
satisfy the condition (16) for non-sticking motions, which at ω = ω0/n gives d ≤ θ0/3.)

Figure 11 shows that frequency-response curves for different d values at ω = ω0/2 graze the
curve for d = 0. Computer simulations testify that in these cases steady-state oscillations are
generally asymmetric: the angular excursion to one side is greater than to the other. This means
that at ω = ω0/n occurrence of special analytical solutions can be expected. Below we show
that in contrast with the general case of forced oscillations, for which the steady-state regime
is described by the unique solution which is independent of the initial conditions, a continuum
of asymmetric non-sticking solutions exists at ω = ω0/2n. Each solution gives an asymmetric
limit cycle (attractor) that corresponds to initial conditions from a certain basin of attraction.

To study the excitation of oscillator at ω = ω0/n, it is more convenient to choose further on
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Figure 11: Frequency–response curves for the oscillator with dry friction given by equation (14) at excitation
frequencies ω < ω0/2 for several values of the dead zone width (d/θ0 = 0.1, d/θ0 = 0.03, d/θ0 = 0.01)

for the time origin t = 0 the moment at which the exciter reaches its maximal deflection θ0, that
is, to assume for θ(t) the following time dependence: θ(t) = θ0 cosωt. With this choice, as we
will see later, the turnarounds in the steady-state motion of the oscillator occur approximately
at t = 0 and t = T/2. This simplifies the form of analytical solutions.

For definiteness we restrict further discussion to the case n = 2. If ω = ω0/2, the spectrum
of steady-state asymmetric oscillations at sufficiently small dry friction (narrow dead zone)
consists primarily of the principal harmonic with the frequency of excitation ω and its second
harmonic, whose frequency 2ω equals the natural frequency ω0 of the oscillator (see Fig. 12).
A small admixture of the third harmonic is also noticeable.

Mathematically, the principal harmonic corresponds to the forced periodic partial solution
of the nonhomogeneous differential equation of motion (3) with γ = 0 and with the sinusoidal
forcing term ω2

0θ0 cosωt whose frequency ω equals ω0/2. This partial solution is 4
3
θ0 cosωt.

The torque of dry friction moves the mid-point of this oscillation to −d (left boundary od the
dead zone) if φ̇ > 0 and to d if φ̇ < 0. This periodic (square-wave) displacement of the
mid-point caused by dry friction explains the appearance of the third harmonic in the solution
shown in Fig. 12. The second harmonic with the frequency 2ω = ω0 is the general solution
of the homogeneous equation that corresponds to (3). This general solution describes natural
oscillations with the frequency ω0 = 2ω, and can be represented (at γ = 0) as A cos 2ωt +
B sin 2ωt, where A and B are arbitrary constants. In contrast to a system with viscous friction,
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Figure 12: Phase diagram and time-dependent graphs of φ̇(t) and φ(t) with the graphs of their harmonics for
non-sticking asymmetric steady-state oscillations at ω = ω0/2 and small width of the dead zone (d = 5.0◦)

now this general solution — oscillation with the natural frequency — does not damp out in the
course of time during the transient. The simulation shows (in accordance with the requirement
φ̇(0) = φ̇(T/2) = 0) that in the steady-state regime the phase of this second harmonic is such
that B = 0 (see Fig. 12). Hence the asymmetric steady-state motion at ω = ω0/2 can be
approximately described by the following equations:

φ+(t) =
4
3
θ0 cosωt+ A+ cos 2ωt− d, φ̇ > 0, (17)

φ−(t) =
4
3
θ0 cosωt+ A− cos 2ωt+ d, φ̇ < 0, (18)

and

φ̇+(t) = −4
3
ωθ0 sinωt− 2ωA+ sin 2ωt, φ̇ > 0, (19)

φ̇−(t) = −4
3
ωθ0 sinωt− 2ωA− sin 2ωt, φ̇ < 0. (20)

One condition on constants A+ and A− follows from the requirement of continuity of φ(t) at
the turnaround points, when the sign of velocity reverses. These are the moments t = 0 and
t = T/2 (see Fig. 12). From φ+(0) = φ−(0) we get A+ − A− = 2d, or A+ = A− + 2d
(condition φ−(T/2) = φ+(T/2) yields the same relation between A+ and A−). Therefore only
one of these constants remains arbitrary.

The steady-state regime described by equations (17)–(20) occurs from the very beginning
(that is, without any transient) if the initial conditions are chosen properly. At t = 0 we get
from (19) or (20) that the required initial angular velocity equals zero: φ̇(0) = 0. This value
is independent of the dead zone width d and the drive amplitude θ0. Since during the first half-
cycle φ̇(0) is negative, for the required initial displacement we should use equation (18), which
yields φ0 = φ(0) = 4

3
θ0 + A− + d. We see that the arbitrary constants A+ and A−, which

determine the contribution of the second harmonic into the steady-state motion, depend on an
arbitrary initial displacement φ0:

A+ = φ0 −
4

3
θ0 + d, A− = φ0 −

4

3
θ0 − d. (21)

This means that in the system with dry friction, in contrast to the oscillator with viscous friction,
different initial displacements φ0 lead generally to different regimes of steady-state oscillations
(to different limit cycles). Substituting these values of A+ and A− in (17) – (20), we get the
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closed-form analytical solutions for asymmetric steady-state subresonant regimes of the dry-
friction oscillator at ω = ω0/2. Below we show that such steady-state regimes occur from the
very beginning if the value of φ0 belongs to a certain interval.

Now we can derive some interesting properties of the discussed steady-state solutions. Ex-
treme elongations correspond to the turnaround points and hence occur at t ≈ 0 and at t ≈ T/2.
Maximum displacement to the right-hand side occurs at t ≈ 0 and, according to equation (17) or
(18), equals φmax =

4
3
θ0+A−+d (or, equivalently, φmax =

4
3
θ0+A+−d). Extreme elongation

to the left-hand side occurs t ≈ T/2 and equals |φmin| = 4
3
θ0 − A− − d = 4

3
θ0 − A+ + d.

We get that the total angular excursion φmax + |φmin| between the extreme points for all
possible solutions (17)–(18) equals 8

3
θ0:

φmax + |φmin| = φmax − φmin =
8

3
θ0. (22)

It depends solely on the drive amplitude θ0, and does not depend on the intensity of dry friction
(on the width d of the dead zone).

The difference between the extreme elongations characterizes the asymmetry of this steady-
state regime:

φmax − |φmin| = 2(A+ − d) = 2(A− + d) = 2(φ0 −
4

3
θ0). (23)

The extreme elongations to both sides are equal to one another if φ0 − 4
3
θ0 = 0. In this case

A+ = d and A− = −d, and the second harmonic in the oscillation described by equations (17)–
(18) vanishes. Such symmetric steady-state oscillation with the amplitude 4

3
θ0 occurs only if

the initial displacement φ0 equals 4
3
θ0 and the initial velocity zero.
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Figure 13: Phase diagram and time-dependent graphs of φ̇(t) and φ(t) with the graphs of their harmonics for
non-sticking symmetric steady-state oscillations at ω = ω0/2 and small width of the dead zone (d = 5.0◦)

The phase trajectory and time-dependent graphs of φ̇(t) and φ(t) (together with the graphs
of their harmonics) for such symmetric oscillation are shown in Fig. 13. (These graphs at
d≪ θ0 almost merge with the graphs of their principal harmonics.)

The initial conditions that lead to the greatest asymmetry of the limit cycle can be found
as follows. We are interested in the unsticking regime with two turnarounds per one excitation
cycle. These turnarounds occur near t = 0 and t = T/2, when the angular velocity φ̇ changes
sign. We can rely on physical considerations in finding the condition for a turnaround occurring
without sticking for a finite time interval. Indeed, to avoid sticking at this point, the restoring
torque of the spring exerted on the flywheel should be greater or at least equal to the greatest

17



possible torque of dry friction. The desired condition corresponds to the equality of these two
torques. When the torque exerted by the spring equals the torque of static friction in magnitude,
the angular acceleration φ̈ of the flywheel equals zero. Next we consider this condition for each
of the turnarounds, occurring at t = 0 and t = T/2.

• For the first turnaround at t = 0 we should require φ̈(0) = 0 using equation (18) that
corresponds to negative angular velocity φ̇(t) < 0 (see Fig. 23). From this requirement
we find immediately A− = −1

3
θ0. Substituting this value to equation (21), we get the first

(lower) boundary φ0(lower) of admissible initial deflections:

φ0(lower) = θ0 + d. (24)

With this initial displacement one of the two possible most asymmetric steady-state os-
cillations occurs, in which the extreme deflections are:

φmax = θ0 + d, φmin = −5

3
θ0 + d. (25)

• To find the other boundary of the admissible initial deflections φ0(upper), we should require
φ̈(T/2) = 0 using equation (17). This yields A+ = 1

3
θ0, and for the second (upper)

boundary of admissible initial deflections we get:

φ0(upper) =
5

3
θ0 − d. (26)

With this initial displacement the other of the two possible most asymmetric steady-state
oscillations occurs, in which the extreme deflections are:

φmax =
5

3
θ0 − d, φmin = −θ0 − d. (27)

To verify these theoretical predictions with the help of numerical simulations, we choose
the drive amplitude θ0 = 60◦, which means that in the steady-state regime the total angular
excursion between the extreme points φmax + |φmin| should equal 8

3
θ0 = 160◦ independently

of the intensity of dry friction. Width d of the dead zone in this simulation equals 5◦. One
of the two possible steady-state oscillations with the greatest asymmetry (see Fig. 12) occurs
from the very beginning (without any transient), according to (24), at the initial conditions
φ(0) = θ0 + d = 65◦, φ̇(0) = 0. The extreme elongations should be φmax = θ0 + d = 65◦ and
φmin = −5

3
θ0+d = −95◦. These theoretical predictions agree perfectly well with the computer

simulation (see Fig. 12).
Steady-state oscillation with equal elongations to both sides (φmax = |φmin| = 80◦) at the

same values of the system parameters (θ0 = 60◦, d = 5◦) occurs if the initial displacement
φ0 =

4
3
θ0 = 80◦. This case is illustrated by the simulation shown in Fig. 13.

The second case of the greatest asymmetry (φ̇(T/2) = 0) occurs, according to (26), at the
initial conditions 5

3
θ0−d = 95◦, φ̇(0) = 0. Extreme elongations in this case, according to (27),

are φmax = 5
3
θ0 − d = 95◦ and φmin = −θ0 − d = −65◦. These asymmetric oscillations are

illustrated by the simulation shown in Fig. 14.
Three different limit cycles of non-sticking oscillations shown in Figs. 12 – 14 correspond

to the same values of the system parameters ω = ω0/2, θ0 = 60.0◦, and d = 5.0◦. Actually,
at ω = ω0/2 there exists a continuum of different steady-state non-sticking motions with the
same total angular excursion 8

3
θ0, proportional to the drive amplitude θ0. This is a manifestation

of multistability — a typical feature of nonlinear systems. If the initial angular velocity φ̇(0)
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Figure 14: Phase diagram and time-dependent graphs of φ̇(t) and φ(t) with their harmonics for non-sticking
asymmetric steady-state oscillations at ω = ω0/2 and small width of the dead zone (d = 5.0◦)

equals zero, and the initial angular displacement φ0 lies in the interval from φ0(lower) = θ0 + d
to φ0(upper) = 5

3
θ0 − d, the steady-state motion starts without a transient. The character of

these steady-state oscillations vary in this interval of initial displacements from one of the most
asymmetric cases at φ0(lower) = θ0 + d (see Fig. 12) through the symmetric case occurring at
φ0 = 4

3
θ0 (Fig. 13) to the other most asymmetric case at φ0(upper) = 5

3
θ0 − d (Fig. 14). If

the initial displacement lies beyond this interval, or the initial velocity is not equal to zero, one
of the limit cycles from the same continuum is eventually established after a transient process,
during which oscillations with sticking for finite time intervals take place. An example of such
transient occurring at θ0 = 60.0◦, d = 5.0◦, and initial conditions φ(0) = 0, φ̇(0) = 0 is shown
in Fig. 15.
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Figure 15: Phase diagram and time-dependent graphs of φ(t) and φ̇(t) for a transient at ω = ω0/2, θ0 = 60.0◦,
d = 5.0◦, and initial conditions φ(0) = 0, φ̇(0) = 0

Not surprisingly that if even a small amount of viscous friction is present in the system,
the above considered asymmetric regimes can be observed only at the initial stage: after a long
transient oscillations become symmetric, like those shown in Fig. 13. Indeed, the asymmetry
is caused by the contribution of the second harmonic, which corresponds to natural oscillations
with the frequency ω0 = 2ω. Mathematically, this second harmonic is the the general solution
of the homogeneous differential equation. In the presence of viscous friction, these natural
oscillations damp out during the transient.

Steady-state non-sticking sub-resonant forced oscillations of the above considered type exist
if dry friction is not strong enough for the given drive amplitude. To find this restriction, it
is sufficient to equate the expressions for the lower and upper boundaries of the interval of
admissible initial deflections given by expressions (24) and (26): φ0(lower) = φ0(upper) (or for
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extreme elongations φmax = θ0 + d and |φmin| = 5
3
θ0 − d at any of the most asymmetric cases).

This yields dmax = θ0/3. At d = θ0/3 there exists only one (symmetric) limit cycle with the
amplitude φmax = 4

3
θ0. At greater values of the dead zone width (d > θ0/3) only steady-state

oscillations with sticking are possible.
Similar peculiarities are characteristic of forced oscillations with dry friction, sinusoidally

excited at other sub-resonant frequencies of even orders ω = ω0/(2n). In particular, for ω =
ω0/4 a continuum of non-sticking asymmetric steady-state motions exists for the same values
of the system parameters, if the width d of the dead zone does not exceed 1

15
θ0, where θ0 is the

drive amplitude. The full angular excursion between extreme elongations equals 32
15
θ0. Each

of these periodic motions occurs without a transient, if the initial velocity equals zero, and the
initial displacement lies in the interval between θ0 + d and 17

15
θ0 − d. An example of such

asymmetric steady-state oscillation is shown in Fig. 16.
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Figure 16: Phase diagram and time-dependent graphs of φ̇(t) and φ(t) with their harmonics for non-sticking
asymmetric steady-state oscillations at ω = ω0/4 and small width of the dead zone (d = 3.0◦)

The stability of asymmetric non-sticking solutions at ω = ω0/(2n) was discussed in [12].
The authors claim that in the parameters domain in which these solutions exist they are marginally
stable in the third-order approximation.

At sub-resonant drive frequencies of odd orders ω = ω0/(2n+1) non-sticking solutions for
an oscillator with dry friction do not exist: at least twice during each cycle of the steady-state
motion velocity turns to zero for finite time intervals. An example of steady-state forced oscil-
lation at ω = ω0/3 is shown in Fig. 17. These time-dependent graphs of φ̇(t) and φ(t) with
their harmonics and the phase orbit are obtained in a computer simulation. For the drive am-
plitude 80.0◦ and dead zone width 10.0◦ oscillations are symmetric with maximum elongation
78.0◦. The spectrum contains harmonics only of odd orders: the first harmonic has the ampli-
tude 91.8◦, the third — 15.6◦, the fifth — 1.4◦. These values are practically the same in cases
the dead zone width lies in the interval 5.0◦ – 25.0◦. Such motions consisting of two sliding
phases and two sticking phases of a finite duration during each cycle of sinusoidal excitation in
a dry friction oscillator are investigated in [19].

8. Concluding remarks

In this paper we concentrated on peculiarities in behavior of a simple mechanical system —
torsion spring oscillator with dry and viscous friction. The intensity of dry friction is character-
ized by the width d of the dead zone. The amplitude of non-forced oscillations reduces under
dry friction during each cycle by the same amount 4d, proportional to the dead zone width, and
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Figure 17: Phase diagram and time-dependent graphs of φ̇(t) and φ(t) with their harmonics for symmetric steady-
state oscillations at ω = ω0/3 with two sliding and two sticking phases during each cycle (θ0 = 80.0◦, d = 10.0◦)

the oscillator stops dead after a finite time. Under sinusoidal forcing, dry friction cannot restrict
the growth of resonant oscillations: at ω = ω0 the amplitude grows indefinitely, increasing in
each cycle through πθ0 − 4d, if the drive amplitude θ0 exceeds the threshold value 4d/π.

In non-resonant cases (ω ̸= ω0) of harmonic excitation, after a transient of a finite duration,
steady-state oscillations of a finite amplitude can establish due to dry friction even in the absence
of viscous friction. Generally, such periodic motion consists of two symmetric non-sticking
phases of equal duration T/2, if, for the given width d of the dead zone, the drive amplitude θ0
is large enough to prevent sticking. The steady-state amplitude of these symmetric oscillations
for given ω uniquely depends on θ0 and d.

At sub-resonant frequencies of excitation ω = ω0/n (n = 2, 4, . . .) certain peculiarities of
forced oscillations reveal themselves. In particular, in the absence of viscous friction a con-
tinuum of different non-sticking steady-state oscillations can exist for the same values of the
system parameters θ0 and d. Such oscillations are generally asymmetric: the angular elongation
to one side is greater than to the other, though the total angular excursion between the extreme
(turnaround) points is the same for given value of the drive amplitude θ0 (and is independent
of the dead zone width d). The asymmetry of a certain steady-state regime of this continuum
depends on the initial conditions. Among each continuum of such solutions coexisting at given
values of θ0 and d, there is a single symmetric oscillation. If even a small amount of viscous fric-
tion is present in the system, these asymmetric regimes can be observed only at the initial stage:
after a long transient the contribution of natural (second) harmonic which causes asymmetry
dies out, and eventually the oscillations become symmetric.

Appendix. Analytical solution for the second half-cycle of resonant excitation

For the first half-cycle of excitation at resonance (ω = ω0) the motion of the flywheel is
given by equation (8), if initially the flywheel is at rest (φ̇(0) = 0) exactly at the left side of
the stagnation zone: φ(0) = −d. If we take some arbitrary initial deflection φ(0) = φ0 to the
left side from the equilibrium (φ0 < 0) which lies beyond the dead zone (|φ0| > d) and initial
velocity φ̇(0) = 0, the motion of the flywheel will also be non-sticking from the very beginning,
and during the time interval 0 < t < T0/2 will be described by the following expression:

φ(t) = (φ0 + d) cosω0t−
1

2
θ0(ω0t cosω0t− sinω0t)− d, 0 < t < T0/2. (28)
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At the end of the first half-cycle (at t = T0/2) the angular velocity of the flywheel becomes
zero, while its deflection to the right side reaches φ1 = −φ0 +

1
2
θ0π − 2d. These values of φ

and φ̇ should be used as the initial conditions at t = T0/2 for the differential equation (5) that
describes (with γ = 0) the second half-period T0/2 < t < T0 of the forced motion, during
which φ̇ < 0. To solve this equation, it is convenient to move the time origin t = 0 to T0/2. In
these new notations equation (5) takes the following form:

φ̈+ ω2
0(φ+ d) = −ω2

0θ0 sinω0t. (29)

Solution to equation (29), satisfying initial conditions φ(0) = φ1 and φ̇(0) = 0, can be written
as follows:

φ(t) = (φ1 − d) cosω0t+
1

2
θ0(ω0t cosω0t− sinω0t) + d. (30)

To find the angular position φ(T0) and the angular velocity φ̇(T0) of the flywheel at the end of
the first cycle of excitation, we should substitute t = T0/2 into equation (30):

φ(T0) = −φ1 + d− 1

2
θ0π + d = φ0 − θ0π + 4d. (31)

Hence the magnitude of angular elongation to the left increased during the first cycle of excita-
tion by the value |φ(T0)−φ0| = πθ0−4d. This increment is independent of the initial deflection
φ0. The succession of maximal deflections at resonance in the oscillator with dry friction forms
an increasing arithmetic progression.

In case d = 0 (zero width of the dead zone, that is, absence of dry friction) the solution
given by equation (28) takes the following form:

φ(t) = φ0 cosω0t−
1

2
θ0(ω0t cosω0t− sinω0t). (32)

Obviously, for initial conditions φ(0) = φ0, φ̇(0) = 0 this solution is valid for any t value,
not only for the first half-cycle of excitation 0 < t < T0/2. According to equation (32), in the
absence of any friction (dry and viscous), the amplitude of resonant forced oscillations changes
in magnitude during one cycle of excitation by the same amount πθ0. If the oscillator is excited
from the state of rest in the equilibrium position, its amplitude grows linearly from the very
beginning. This growth continues indefinitely. From the energy considerations, this can be
easily explained by certain phase relations between rotary oscillations of the flywheel and the
sinusoidally varying torque exerted on the flywheel by the spring: this torque acts always in the
direction of rotation, increasing thus the energy of the flywheel.
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Figure 18: Oscillations at resonance without friction (with initial displacement)

However, if the initial displacement of the flywheel is positive (φ(0) > 0), the external
torque at the initial stage is directed against the angular velocity, and the amplitude of oscilla-
tions diminish, in spite of the exact tuning to resonance, through value πθ0 during each cycle.
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The energy is transferred from the oscillator to the exciter. This situation is illustrated in Fig. 18.
After the amplitude reduces to zero, the phase relations between the exciting rod and the fly-
wheel become favorable for the transfer of energy to the oscillator, and the amplitude starts to
grow indefinitely. In the absence of dry friction, the initial linear reduction and further growth
of the amplitude occur equally fast, in contrast to the case with dry friction (see Fig. 7), in which
friction speeds up the reduction and slows down the growth of the amplitude.
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