
Peculiarities in the energy transfer by waves on

strained strings

Eugene I. Butikov

St. Petersburg State University, St. Petersburg, Russia

E-mail: e.butikov@phys.spbu.ru

Abstract. Localization of elastic potential energy associated with waves in a

stretched string is discussed. The influence of nonlinear coupling between transverse

and longitudinal waves on the density of energy is investigated by considering the

examples of stationary traveling and standing waves. Misunderstandings about

different expressions for the density of potential energy encountered in the literature

are clarified. The common statement regarding the relationship between the densities

of kinetic and potential energies in a transverse wave is criticized.

PACS numbers: 45.20.dg, 45.30.+s, 46.05.+b, 46.40.-f, 46.70.Hg, 62.30.+d,

01.30.mm, 01.30.Os, 01.50.Zv

Keywords: transverse and longitudinal waves, nonlinear coupling, elastic potential

energy, energy flow, energy localization

1. Introduction

The transport of energy by waves in a string constitutes an important part of the theory

of wave propagation. When a wave is present, the string gains both potential and

kinetic energies. All the texts and papers agree on the expression for the kinetic energy.

However, a serious confusion exists in the literature regarding the density of potential

energy associated with waves in a strained string. This confusion originates from the

calculation of potential energy stored in a string in a well-known classic text by Morse

and Feshbach, Ref. [1]. Comparing two different expressions for the elastic potential

energy, Morse and Feshbach came to the conclusion that the potential energy of a string

element is not unique. Unfortunately, this erroneous statement spread widely in the

literature. Different expressions for the density of elastic potential energy are suggested

and discussed in several publications (Refs. [2] – [4]). In a recent contribution to this

journal [5] we have tried to clarify these misunderstandings, showing that the elastic

potential energy stored in a string depends uniquely on the instantaneous shape of the

string. In the present communication we confirm this point of view by examples of

stationary periodic traveling and standing waves on a strained string, including cases in

which nonlinear coupling between transverse and longitudinal distortions of the string

is essential.
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2. Energy of transverse waves in a strained string

Our physical model is the standard ideal string which is assumed to be perfectly flexible

and linearly elastic. The only restoring force acting on the string elements is a tensile

force acting everywhere tangential to the local string direction. Linear elasticity implies

that the tensile force is assumed to depend linearly on the amount the string is stretched

from its undeformed length. In an undisturbed stretched string each segment already

stores some elastic potential energy. However, we are interested here only in the

additional potential energy associated with a disturbance caused by the wave. In other

words, we assume that the string under tension has zero elastic potential energy in the

absence of a wave. For simplicity, we consider planar distortions of the string, which

can be described by two scalar quantities: momentary longitudinal displacement ξ(x, t)

of a string point whose equilibrium coordinate is x, and displacement ψ(x, t) of this

point in the transverse direction. In this section we concentrate on the contribution of

transverse distortions ψ(x, t) to the elastic potential energy of the string.

In standard texts that deal with waves in an elastic string (see, for example, Refs. [6],

[7]) an assumption is usually made that the slope ∂ψ/∂x is small everywhere, so that

the longitudinal motion of the string points can be neglected in comparison with the

transverse motion. In this section we accept this commonly used approximation that all

points essentially move only in the transverse direction. Below in Section 3 we consider

the possible longitudinal displacements of string points caused by nonlinear effects.

Let us consider an elementary string segment, which in the absence of a wave lies

between x and x + ∆x. Its velocity in a transverse wave ψ(x, t) is ∂ψ/∂t. Hence the

kinetic energy ∆Ekin of the segment and the linear density of kinetic energy εkin (kinetic

energy per unit length) are given by the following expressions:

∆Ekin =
1

2
ρl

(
∂ψ(x, t)

∂t

)2

∆x, εkin =
1

2
ρl

(
∂ψ(x, t)

∂t

)2

, (1)

where ρl is linear density (mass per unit length) of the stretched string in the absence

of a wave.

The calculation of the potential energy associated with the element ∆x, or the

potential energy density (the potential energy per unit length), is a more subtle matter.

Elementary treatments in most textbooks typically assume that additional potential

energy ∆Epot of the string element ∆x which is disturbed by a transverse wave of a small

amplitude, and the corresponding potential energy density εpot, are given approximately

by the following expressions:

∆Epot =
1

2
T

(
∂ψ(x, t)

∂x

)2

∆x, εpot =
1

2
T

(
∂ψ(x, t)

∂x

)2

. (2)

This expression for ∆Epot is usually treated as the work done by the approximately

constant tension T in additional stretching the string element through 1
2
(∂ψ/∂x)2∆x

as the element is distorted and displaced transversely from the undisturbed position

into the current position with the left end located at (x, ψ(x, t)) and the right end — at
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(x+∆x, ψ(x+∆x, t)). In [5] we have shown that the approach of Morse and Feshbach [1]

for calculation of the elastic potential energy gives the same result, equation (2), if this

approach is modified in order to give the true localization of potential energy rather

than the energy stored in the whole string.

According to equations (1)–(2), in a purely transverse wave of an arbitrary shape

ψ(x, t) = f(x − vT t) traveling along the string with the speed vT , the linear densities

of kinetic and potential energies are equal to one another at any spatial point x at any

time instant t; they rise and fall together. In particular, for a sinusoidal transverse wave

ψ(x, t) = A sin(kTx− ωt) (here kT = ω/vT ), both εkin and εpot oscillate with frequency

2ω, reaching simultaneously their minimum (zero) values at crests and troughs, and

maximum values 1
2
ρlω

2A2 (equal for both) at points of zero displacement ψ(x, t) = 0.

Clear qualitative descriptions of the energy transformations in a transverse sinusoidal

traveling wave can be found in many standard texts on the wave motion. However, the

situation may be different when nonlinear effects are taken into account (see Section 3

for details).

For a standing wave described, say, by the wavefunction A sin(kTx) sin(ωt), the

densities of kinetic and potential energies are given by the following expressions:

εkin =
1

2
ρlA

2ω2 sin2(kTx) cos
2(ωt), (3)

εpot =
1

2
ρlA

2ω2 cos2(kTx) sin
2(ωt). (4)

At the nodes kTx = nπ (n = 0,±1,±2, . . .), and εkin is always zero, while εpot oscillates

between zero and the maximum value 1
2
ρlω

2A2 with the frequency 2ω. At the antinodes

cos kTx = 0, and εpot is always zero, while εkin oscillates between zero and the same

maximum value 1
2
ρlω

2A2. The density of total mechanical energy in the string εkin+εpot
also oscillates with time with the frequency 2ω and with an amplitude that is position

dependent. The energy flow P (x, t) in the standing wave

P (x, t) = −T ∂ψ(x, t)
∂x

∂ψ(x, t)

∂t
= −1

4
ρlω

2A2vT sin(2kTx) sin(2ωt) (5)

is always zero at nodes and antinodes, where sin(2kTx) = 0. In particular, the flow

equals zero at the end points of the string: the energy of the whole oscillating string

is conserved. However, for all points of the string between a node and the adjoining

antinodes this is true only for the time average: ⟨P (x, t)⟩ = 0 over an integer number

of half-periods. During a quarter period the energy flow is directed from nodes to

antinodes, and during the next quarter period its direction is reversed. Though such

quantitative descriptions of energy transformations in a standing wave also can be found

in many standard texts, one can encounter in the literature serious misconceptions

concerning the energy transfer in a standing wave. For example, the author of Ref. [2]

writes: “Unlike the case of a traveling wave, in a standing wave there is no energy

transfer, and the total mechanical energy of each string element is expected to be

stationary.” This is certainly an erroneous statement. Adjoining elements of the string

interact and exchange energy even in the standing wave, so that the mechanical energy
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of an individual string element is not conserved. Indeed, at the moment when the

oscillating string passes through its equilibrium, the string energy is wholly kinetic and

is localized near the antinodes. Vice versa, a quarter period later the string energy is

wholly potential and is localized near the nodes. In the meantime, during this quarter

period, the energy travels from antinodes toward nodes transforming simultaneously

from the kinetic energy to the potential one. During the next quarter period the string

energy is transferred back from nodes to antinodes and transformed simultaneously from

the potential energy to the kinetic one.

3. Nonlinear coupling between transverse and longitudinal distortions in a

stretched string

Any local stretching of the string caused by a transverse wave in the general case can

increase the local tension. One may think that the increased tension, in turn, must

excite longitudinal distortions that can take some of the energy of the transverse wave.

These small additional longitudinal distortions are produced by transverse waves by

virtue of nonlinear effects. Rowland (Refs. [3], [8]) has shown that these nonlinearly

induced small longitudinal distortions in a stretched string can give a contribution to

the potential energy of the same order of magnitude as the original transverse distortions.

This means that generally it may be necessary to take these nonlinear effects into account

in calculating the true density of potential energy.

In the approximate nonlinear theory of a linearly elastic perfectly flexible string,

in which both transverse and longitudinal motions are taken into account [9], the wave

equation for transverse distortion ψ(x, t) is just an ordinary linear wave equation, if

terms proportional to the third and higher powers of the distortion are neglected:

∂2ψ

∂t2
− v2T

∂2ψ

∂x2
= 0. (6)

In equation (6) vT =
√
T/ρl is the speed of transverse waves. The wave equation

for longitudinal distortion ξ(x, t) in this nonlinear theory [9] includes a forcing term

proportional to the second power of the transverse wave amplitude:

∂2ξ

∂t2
− v2L

∂2ξ

∂x2
= (v2L − v2T )

∂ψ

∂x

∂2ψ

∂x2
. (7)

In equation (7) the speed of non-forced longitudinal waves is given by v2L = (SY +

T )/ρl = (Y/ρ)(1 + T/SY )2 ≈ Y/ρ, where Y is the Young’s modulus, S is the cross-

sectional area, ρ is the volume density of the unstrained string material (see, for

example, [5]). For an ordinary string (say, piano or guitar string) the tension T is

usually small in comparison to SY , which means that its length L in the stretched state

under tension T is only slightly greater than its relaxed length L0 in the absence of

tension: (L− L0) ≪ L0.

According to equation (7), nonlinear effects in the general case cause coupling

between longitudinal and transverse waves in a taut string. Next we discuss how this
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coupling influences the spatial distribution of the elastic potential energy associated

with a wave in a stretched string.

A slinky spring which is often used as a “string” in lecture demonstrations to

illustrate various properties of elastic waves, in relaxed (unstretched) state has a

negligible length L0 compared to its equilibrium length L under constant tension T :

L0 ≪ L. This means that for a slinky spring SY ≪ T , and hence transverse and

longitudinal waves have almost the same speed (vL ≈ vT =
√
T/ρl). If transverse

and longitudinal waves travel with the same speed, equations (6) and (7) decouple,

and the two kinds of waves can be perfectly separated. This is the case in which

exactly transverse motion is theoretically possible. In a purely transverse wave energy

transformations occur just in the way described in Section 2.

However, for all cases when the speed of transverse waves differs from that of

longitudinal waves (vL ̸= vT ), equation (7) shows that longitudinal waves are necessarily

generated whenever transverse waves are excited in a string. This is a nonlinear effect,

and the amplitudes of generated longitudinal waves ξ(x, t) that accompany the original

transverse wave ψ(x, t), according to equation (7), are proportional to the second power

of the original transverse wave amplitude. Nevertheless, as was first indicated by

Rowland [8], these longitudinal waves can make a contribution to the density of potential

energy in a string of the same order of magnitude as the original transverse wave. Indeed,

potential energy of a string segment ∆x, associated with longitudinal distortion ξ(x, t)

in the strained string, consists of two terms (see, for example, [5]):

∆Epot = T

(
∂ξ

∂x

)
∆x+

1

2
(SY + T )

(
∂ξ

∂x

)2

∆x. (8)

In the case under consideration the longitudinal distortions are induced by the transverse

wave, and, according to equation (7), for a sinusoidal transverse wave of a small

amplitude A are proportional to the second power of its amplitude (more exactly, to

A2/λT , where λT = (2π/ω)vT is the wavelength, see Section 4). Hence in equation (8)

only the first term, linear in linear in (∂ξ/∂x), is essential. We should take this term into

account in order to find the true localization of potential energy. With this contribution

of longitudinal distortions, the linear density of elastic potential energy is given by the

expression:

εpot ≈
1

2
T

(
∂ψ

∂x

)2

+ T
∂ξ

∂x
. (9)

As we have shown in [5], the term proportional to the first power of (∂ξ/∂x) in

equation (9) for the potential energy density in an infinite sinusoidal wave or in a

standing wave on a string with fixed ends does not add any energy to the whole string:

this term integrates to zero along the string and hence describes solely some relocation

of the potential energy which the string has already stored in the absence of waves by

virtue of its preliminary uniform tension. Indeed, in sinusoidal waves the momentary

spatial dependence of longitudinal distortion ξ(x, t) is proportional to sin(2πx/λ). Hence

(∂ξ/∂x) ∼ cos(2πx/λ), and the average value of T (∂ξ/∂x) equals zero. Negative values
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of the term T (∂ξ/∂x) appear for the segments of the string which are stretched in the

wave by a smaller amount than in the string without a wave, that is, when their elastic

energy is smaller than in the preliminary stretched undisturbed string. According to (9),

this elastic energy is negative (gives negative contribution to the elastic potential energy

of the whole string) due to the arbitrary assumption that the elastic energy of the string

without a wave equals zero. If we allow some segment of the preliminary stretched string

to quasistatically shorten a bit, the elastic forces exerted by the ends of this segment

on the neighbors will do some positive work. This work equals the diminution of elastic

energy stored in the segment by virtue of its preliminary stretching. This pre-existing

elastic potential energy stored in a segment of the stretched string can be borrowed by

its neighbors and then returned in the process of wave motion. This is the physical

sense of the term T (∂ξ/∂x) in the potential energy density: it describes the spatial

redistribution by the wave of the preliminary stored potential energy.

The appearance of the term linear in (∂ξ/∂x) in expression (9) for the energy

density εpot also caused misinterpretations in the literature. According to Rowland [3],

“a knowledge of the longitudinal displacement of the mass elements of the string removes

the ambiguity in the local potential energy density.” We claim that there is no such

ambiguity: the knowledge of additional longitudinal distortions caused by a transverse

wave simply allows us to definitely determine the redistribution of potential energy in

the string.

Next we discuss in detail the relocation of potential energy associated with traveling

and standing waves on a strained string by considering certain examples.

4. Relocation of the elastic potential energy in transverse waves caused by

induced longitudinal distortions

Let a traveling transverse wave ψ(x, t) = A sin(kTx−ωt) be excited in the string. Then

the right-hand side of equation (7) equals −(v2L−v2T )12A
2k3T sin 2(kTx−ωt). Therefore we

can search for a partial solution to equation (7) which describes the forced longitudinal

motion in the form of a uniform longitudinal wave with the same dependence on x

and t, namely ξ(x, t) = B sin 2(kTx − ωt) with kT = ω/vT . This induced wave has

the frequency 2ω and travels along the string with the same speed vT as the original

transverse wave. Substituting ξ(x, t) in equation (7), we find that such longitudinal wave

satisfies equation (7) if its amplitude B is equal to −1
8
kTA

2. (The ratio of amplitude

B of this wave to the amplitude A of the original wave equals −1
4
πA/λT .) Hence a

possible consistent solution to wave equation (6) for a transverse motion and to wave

equation (7) for the coupled longitudinal motion is given by the following expressions:

ψ(x, t) = A sin(kTx− ωt), ξ(x, t) = −1

8
kTA

2 sin 2(kTx− ωt). (10)

Trajectory of a string point in this wave looks like figure eight (Lissajous 2:1 curve).

This trajectory is shown schematically (exaggerated) in the left-hand side of figure 1,a.

The solid curve shows the function ψ(x, t) = A sin(kTx − ωt) at t = 0. The displaced
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circles indicate momentary positions of string points for t = 0. The same string points

are also shown in their equilibrium positions by circles on the axis.

ψ (x,t)

ξ (x,t)

ψ (x,t)

ξ = 0

a

b

Figure 1. (a) Trajectory of a string point (left) and momentary (for t = 0)

transverse displacements ψ(x, t) = A sin(kTx − ωt), and longitudinal displacements

ξ(x, t) = B sin 2(kTx−ωt) of string points in the traveling wave which is described by

equations (10); (b) displacements of the string points in a purely transverse wave.

For comparison, in figure 1,b momentary displacements of the same string points

are shown for a purely transverse wave. If nonlinear effects are taken into account, such

a wave with ξ = 0 can exist only in a “string” like a slinky spring for which transverse

and longitudinal waves travel with almost equal velocities (vT ≈ vL), as can be seen

from equation (7).

The kinetic energy 1
2
ρl(∂ξ/∂t)

2 of the induced longitudinal motion is negligible

because it is proportional to the square of amplitude B and hence to the fourth power

of amplitude A of the transverse motion. Therefore the kinetic energy density εkin in

the traveling wave (10), just as in a pure transverse wave, is given by the following

expression:

εkin =
1

2
ρl

(
∂ψ

∂t

)2

=
1

2
A2Tk2T cos2(kTx− ωt). (11)

The most interesting consequence of the nonlinear effect that couples the

transverse wave with longitudinal distortions concerns the relocation of elastic potential

energy. For the wave with coupled transverse and longitudinal distortions described

by equation (10), the potential energy density is given by equation (9). (The omitted

term is proportional to the fourth power of amplitude A and hence gives negligible

contribution.) Substituting ψ(x, t) and ξ(x, t) from equation (10) in equation (9), we

find that the potential energy density εpot in this periodic wave does not depend on

time t and coordinate x, that is, the elastic potential energy associated with the wave

is uniformly distributed along the string:

εpot ≈
1

2
T

(
∂ψ

∂x

)2

+ T
∂ξ

∂x
=

1

4
Tk2TA

2 = π2T
A2

λ2
. (12)

We compare this remarkable result with the case of a purely transverse wave, in which

potential energy density εpot(x, t) at any spatial point at any time instant is equal to
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kinetic energy density εkin(x, t) given by equation (11), and therefore εpot(x, t) oscillates

at any spatial point between zero and a maximum value 1
2
Tk2TA

2 with frequency 2ω.

The uniform distribution of potential energy εpot(x, t) associated with the periodic wave

(10) in a string means that by virtue of the induced longitudinal distortions the string is

almost evenly stretched additionally by the wave: we note that in figure 1,a the distances

between adjoining circles in the distorted string, being larger than in equilibrium, are

equal to one another, in contrast with the unevenly stretched string in a purely transverse

wave (figure 1,b).

The instantaneous (for t = 0) spatial distributions of kinetic, potential, and total

energies in the wave described by equation (10) are shown in figure 2,a. The elastic

potential energy associated with this wave is uniformly distributed along the string,

and is equal to the average value of potential energy in a purely transverse wave of the

same amplitude A, for which εpot(x, t) = εkin(x, t) (figure 2,e): we emphasize that the

induced longitudinal distortions essentially do not add any energy to the wave but cause

only a redistribution of the potential energy through the work of the force of tension

T which is described by the second term in equation (9). This term is positive for

the segments of the string whose length in the wave is increased, and negative for the

segments whose length in the wave is diminished. On average, this term (associated

with the induced longitudinal distortions) gives no contribution to the potential energy

of the wave. The omitted term in equation (9) is proportional to the fourth power of

amplitude A and hence gives negligible contribution. Therefore the total amount of

elastic potential energy and its average density associated with the combined transverse

and forced longitudinal wave described by (10) are determined solely by transverse

distortions of the string. In spite of its uniform spatial distribution, this potential

energy is transferred by the wave along the string in the direction of propagation with

speed vT together with the kinetic energy. The flow of potential energy through any

point is constant, while the flow of kinetic energy oscillates with frequency 2ω. To

get an expression for the momentary value of total energy flow P (x, t), which would

be consistent with the densities of kinetic energy, equation (1), and potential energy,

equation (9), we should include in P (x, t) an additional term −T (∂ξ/∂t). This term is

equal to the work per unit time done by the force T while the string point is displaced

in the longitudinal direction. The time average of this work is zero. This means that

on average the energy flow in this wave ⟨P (x, t)⟩ = 1
2
TA2ωkT = 1

2
ρlω

2A2vT is the same

as in the purely transverse wave of amplitude A.

In the above discussion we considered a possible solution, equation (10), of

nonlinearly coupled wave equations for transverse and longitudinal distortions. This

solution describes an idealized situation in which a sinusoidal transverse traveling wave

of infinite length and duration and a forced longitudinal wave whose frequency is twice

the frequency of the original transverse wave travel together with the same speed vT
along a uniform infinite string. In such a wave the elastic potential energy is uniformly

distributed along the string. The same solution can be applied to a semi-infinite string.

Indeed, we can cut the infinite string at some point x = 0, forget about its left-hand
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Figure 2. Spatial dependencies of momentary (for t = 0) values of the densities of

kinetic, potential, and total energy (in units Tk2TA
2) in the transverse wave ψ(x, t) =

A sin(kTx − ωt) coupled with longitudinal displacements: ξ(x, t) = B sin 2(kTx − ωt)

(a); ξ(x, t) = B[sin 2(kTx − ωt) − sin 2(kLx − ωt)] at vL = 6vT (b); at vL = 4vT (c);

at vL = 2vT (d); at vL = vT (e). Case e corresponds to a purely transverse wave.

semi-infinite part, and force the end point x = 0 of the remaining semi-infinite right-

hand part to move exactly in the way it moved in the original infinite string, that is,

along the figure eight (see figure 1) according to equations

ψ(0, t) = −A sin(ωt), ξ(0, t) =
1

8

ω

vT
A2 sin(2ωt). (13)

Then all points between x = 0 and infinity of this semi-infinite string will move just in

the same way as described by the solution (10). The energy transferred by this wave

from x = 0 to infinity is supplied by the source that makes the end point x = 0 move

along the figure eight.

However, it looks more natural to force the left-hand end of the semi-infinite string

(the end located at x = 0) to oscillate purely transversely, that is, according to ξ(0, t) = 0

instead of the figure eight (13). To satisfy this boundary condition at x = 0, we should

add to solution (10) for the longitudinal distortion a solution of the homogeneous wave

equation, namely equation (7) with zero right-hand part. This additional term has the

form of a longitudinal wave with frequency 2ω, traveling with the speed vL = ω/kL.

Therefore the solution to the nonlinearly coupled wave equations for the semi-infinite

string whose end x = 0 moves transversely has the following form:

ψ(x, t) = A sin(kTx− ωt),

ξ(x, t) = − 1

8
kTA

2[sin 2(kTx− ωt)− sin 2(kLx− ωt)]. (14)
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Now with the help of equation (9) we can calculate the density of potential energy in

the wave described by the solution (14):

εpot ≈
1

2
T

(
∂ψ

∂x

)2

+ T
∂ξ

∂x
=

1

4
Tk2TA

2

[
1 +

kL
kT

cos 2(kLx− ωt)

]
. (15)

If the speed of longitudinal waves is much greater than that of transverse waves, that

is, if kL ≪ kT , the second term in brackets is negligible. In this case the density of

potential energy is almost constant, and, similarly to the solution (10), the potential

energy is evenly distributed along the string (figure 2,a). If the speed of longitudinal

waves is only several times greater than that of transverse waves, the density of potential

energy varies along the string about the same average value 1
4
Tk2TA

2 with the spatial

period λL/2. Deviations from the mean value the greater the closer vL to vT . Graphs

of the instantaneous densities for kinetic, potential (equation (15)), and total energy in

the wave are shown in figure 2,b – d for different values of vL/vT = λL/λT . If vL = vT ,

the longitudinal distortions vanish (according to (14) ξ(x, t) = 0), and at any spatial

point the momentary density of potential energy equals the density of kinetic energy

(figure 2,e), because the wave is purely transverse. In all cases the density of potential

energy is well defined, without any ambiguity. We emphasize again that the induced

longitudinal distortions cause some relocation of potential energy, but do not add any

potential energy to the string: in the above considered stationary traveling waves no

energy is transferred from the transverse motion to the induced longitudinal motion.

For a standing transverse wave with the induced longitudinal motion in a taut

string, Morse and Ingard, Ref. [9] (see also Refs. [3], [8]), obtained the following solution

to nonlinearly coupled wave equations (7):

ψ(x, t) = A sin(kTx) sin(ωt),

ξ(x, t) = B sin(2kTx)

(
sin2(ωt)− 1

2

v2T
v2L

)
, (16)

where the amplitude B of the forced longitudinal wave is

B = −1

8
A2kT = −π

4

A2

λT
. (17)

For a string of length L with fixed ends λT = 2L/n (n = 1, 2, . . .), kT = nπ/L, ω = kTvT .

The shape of the standing wave described by equations (16) is shown in figure 3,a for

an exaggerated amplitude A = 0.15λT . Deviations of this shape from a pure sine curve

(which is also shown in figure 3,a) are caused by the induced longitudinal distortions.

The string points located at antinodes move purely transversely. Trajectories of points

between nodes and antinodes are parabolas (degenerate 2:1 Lissajous curves).‡
According to equation (9), the density of elastic potential energy in the transverse

standing wave (16) with the induced longitudinal distortions is given by the following

‡ Trajectories of several string points in the standing wave described by equations (16) are also

considered in Ref. [3]. We note that actually these trajectories are parabolas (figure 3,a), but not

the inflected curves shown by dashed lines in figure 4 of Ref. [3].



Peculiarities in the energy transfer by waves on strained strings 11

0.25 0.5 0.75

0.15

ψ (x,t)

ξ (x,t)

λλ λ

0.25 0.5 0.75

0.5

1

εpotkinε

εpot

(t = 0)

(t = 0)

(t = T/4)

λ λ λ λ

εkin(t = T/4)

0

0

a

b

Figure 3. (a) Parabolic trajectories of string points and momentary (for t = T0/4)

transverse ψ(x, t) = A sin(kTx) sinωt and longitudinal ξ(x, t) = B sin(2kTx)[sin
2(ωt)−

1
2v

2
T /v

2
L] displacements of string points in the standing wave which is described by

equations (16); (b) Spatial distribution of kinetic and potential energies (in units
1
2Tk

2
TA

2) at t = 0 and t = T0/4 (quarter period later).

expression:

εpot =
1

4
Tk2TA

2

(
sin2 ωt+

k2L
2k2T

cos(2kTx)

)
. (18)

For the moment t = T0/4 (T0 = 2π/ω) all the string points reach their utmost

displacements (see figure 3,a). Kinetic energy at this moment is zero, and potential

energy reaches its maximum. If vL/vT = λL/λT ≫ 1, potential energy is distributed

almost uniformly along the string; its density εpot is slightly greater than the mean value

near the nodes, and εpot is slightly smaller near the antinodes (figure 3,b). During a

quarter period all potential energy is transformed into kinetic energy, which is localized

near the antinodes — see graph of εkin for t = 0. We note that at time moment t = 0

when the total energy of the string is equal to kinetic energy and potential energy is zero,

the density of potential energy is not zero: εpot is positive near the nodes and negative

near the antinodes. This means that at t = 0 when the string passes through equilibrium

position, its tension is not exactly uniform. Indeed, points of the string between a node

and antinode move along slightly curved trajectories (figure 3,a). To provide these

points (elementary segments of the string) with necessary centripetal acceleration, the

elastic forces exerted on the string segment by its neighbors must give a resultant force

directed towards the center of curvature of the trajectory.

In the limiting case vL → vT , which corresponds to the slinky spring, the nonlinear

coupling term in the right-hand side of equation (7) for the longitudinal distortion

vanishes. This means that at vL = vT a purely transverse standing wave is possible.

However, a nonzero induced longitudinal motion holds in the limit vL → vT in the

solution described by equation (16). Such coexistence of several different stationary

solutions at the same values of all parameters is a manifestation of multistability — a
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characteristic feature of nonlinear systems.

5. Concluding remarks

In this paper we concentrated on the localization of elastic potential energy associated

with waves on a string. Considering examples of stationary sinusoidal waves, we have

tried to clarify misunderstandings and contradictions encountered in the literature

regarding the energy of waves on strained strings. We emphasize that there is no inherent

ambiguity in elastic potential energy associated with transverse waves, contrary to the

widespread opinion originating from the classic textbook of Morse and Feshbach, Ref. [1].

When the transverse and longitudinal distortions of the string caused by the wave are

known, the localization of potential energy is uniquely defined by equations (2) and

(8) for the potential energy stored in an individual segment of the string. Due to

the nonlinear coupling, a transverse wave can generate in the string small longitudinal

distortions. Occurrence in equation (9) of the term proportional to the first power of the

longitudinal distortion explains the redistribution by the wave of the potential energy,

already stored in the string by virtue of its preliminary stretching. This unambiguous

relocation of the elastic potential energy is illustrated in the paper by considering

the examples of sinusoidal traveling and standing nonlinearly coupled transverse and

longitudinal waves. The average energy carried by the combined transverse and

nonlinearly induced longitudinal traveling wave is equal to that of the original transverse

wave. The only change caused by the nonlinear coupling is revealed in the spatial

distribution of potential energy due to the additional longitudinal distortions generated

by the wave as it moves in the strained string.
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