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Abstract
An enhanced and more exact criterion for dynamic stabilization of the
parametrically driven inverted pendulum is obtained: the boundaries of stability
are determined with greater precision and are valid in a wider region of the
system parameters than previous results. The lower boundary of stability is
associated with the phenomenon of subharmonic resonances in this system.
The relationship of the upper limit of dynamic stabilization of the inverted
pendulum with ordinary parametric resonance (i.e. with destabilization of the
lower equilibrium position) is established. Computer simulation of the physical
system aids the analytical investigation and proves the theoretical results.

PACS numbers: 05.45.−a, 05.10.−a, 07.05.Tp, 45.10.−b

1. Introduction

A well-known curiosity of classical mechanics is the dynamic stabilization of an inverted
pendulum. An ordinary rigid planar pendulum whose pivot is forced to oscillate along the
vertical line becomes stable in the inverted position if the driving amplitude and frequency lie in
certain intervals. At small and moderate deviations from the inverted position, the pendulum
shows no tendency to turn down. Being deviated, the pendulum executes relatively slow
oscillations about the vertical line on the background of rapid oscillations of the suspension
point. Due to friction these slow oscillations gradually damp away, and the pendulum
eventually comes to rest in the vertical inverted position.

This type of dynamic stability was probably first pointed out by Stephenson [1] more than
a century ago. In 1951, such extraordinary behavior of the pendulum was physically explained
and investigated experimentally in detail by Pjotr Kapitza [2], and the corresponding physical
device is now widely known as ‘Kapitza’s pendulum’. Since then, this intriguing system has
attracted the attention of many researchers, and the theory of the phenomenon may seem to be
well elaborated—see, for example, [3]. A vast list of references on the subject can be found in
[4]. Nevertheless, more and more new features in the behavior of this apparently inexhaustible
system are reported regularly.
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Among new discoveries regarding the inverted pendulum, the most important for finding
the stability boundaries are the destabilization of the (dynamically stabilized) inverted position
at large driving amplitudes through excitation of period-2 (‘flutter’) oscillations [5, 6], and
the existence of n-periodic ‘multiple-nodding’ regular oscillations [7]. The relationship of
‘flutter’ oscillations in the inverted pendulum with ordinary parametric resonance of the
hanging pendulum is discussed in [8]. A physical interpretation of periodic multiple-nodding
oscillations as subharmonic parametric resonances is given in [9].

In this paper, we present an improved criterion for dynamic stabilization of the
parametrically driven inverted pendulum. The lower boundary of the parameter space region
in which the inverted pendulum can be stable is associated with conditions of subharmonic
resonance of an infinitely large order. The upper boundary is related to a certain branch of
excitation of ordinary parametric resonance. These relationships allow us to determine the
boundaries of dynamic stabilization in a wider region of the system parameters (including
relatively low frequencies and large amplitudes of excitation), and with a greater precision
compared to previous results.

2. The physical system

We consider for simplicity a light rigid rod of length l with a heavy small bob of mass M on
its end and assume that all the mass of the pendulum is concentrated in the bob. The force
of gravity Mg (here g is the free fall acceleration) provides a restoring torque −Mgl sin ϕ

whose value is proportional to the sine of angular deflection ϕ of the pendulum from the
lower equilibrium position. With the suspension point at rest, this torque makes the deviated
pendulum to swing about the lower stable equilibrium position. When the axis of the pendulum
is constrained to move with acceleration along the vertical line, it is convenient to analyze the
motion in the non-inertial reference frame associated with this axis. Due to the acceleration
of this frame of reference, the pseudoforce of inertia −Mz̈ is exerted on the pendulum, where
z(t) is the vertical coordinate of the axis. The torque of this force −Mz̈l sin ϕ must be added
to the torque of the gravitational force.

We assume that the axis is forced to execute a given harmonic oscillation along the vertical
line with frequency ω and amplitude a: z(t) = a cos ωt. The force of inertia Fin(t) exerted
on the bob in the non-inertial frame of reference also has the same sinusoidal dependence on
time:

Fin(t) = −Mz̈(t) = Mω2z(t). (1)

This force of inertia is directed upward during the time intervals for which z(t) > 0, i.e. when
the axis is over the middle point of its oscillations. Therefore, during the corresponding half-
period of the oscillation of the pivot, this additional force is equivalent to some weakening
of the force of gravity. During the other half-period, the axis is below its middle position
(z(t) < 0), and the action of this additional force is equivalent to some strengthening of the
gravitational force.

The graphs of time history and the phase trajectories for different modes of the pendulum
that are presented further in this paper are obtained by a numerical integration of the exact
differential equation for angular deflection ϕ(t) of the pendulum with the oscillating pivot.
This equation includes, besides the torque −Mg sin ϕ of the gravitational force Mg, the torque
of the force of inertia Fin(t) which depends explicitly on time t:

ϕ̈ + 2γ ϕ̇ +
(g

l
− a

l
ω2 cos ωt

)
sin ϕ = 0. (2)

2
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The second term in (2) originates from the frictional torque which is assumed in this model
to be proportional to the momentary value of the angular velocity ϕ̇. The damping constant γ

in this term is inversely proportional to the quality factor Q which is conventionally used to
characterize damping of small natural oscillations under viscous friction: Q = ω0/2γ , where
ω0 = √

g/l is the frequency of infinitely small natural oscillations in the absence of pivot
oscillations.

Oscillations about the inverted position can be formally described by the same differential
equation (2) with negative values of g, as if the force of gravity were directed upward. In other
words, we can treat the free fall acceleration g in equation (2) as a control parameter whose
variation is physically equivalent to the variation of the gravitational force. When this control
parameter g is diminished through zero to negative values, the gravitational torque in (2) also
reduces down to zero and then changes its sign to the opposite. Such a ‘gravity’ tends to bring
the pendulum into the inverted position ϕ = π , destabilizing the lower equilibrium position
ϕ = 0 of the unforced pendulum and making the upper position ϕ = π stable: at g < 0 the
inverted position in (2) is equivalent to the lower position at positive g.

3. An approximate criterion of stability

Since the first works of Kapitza [2], stabilization of the inverted pendulum is usually explained
by the method of averaging based on a heuristic approach, according to which the pendulum
motion is represented as a relatively slow oscillation described by a smooth function ψ(t).
The slow motion is distorted by superposition of rather small fast vibrations δ(t) � 1 of a
high frequency:

ϕ(t) = ψ(t) + δ(t) ≈ ψ(t) − z(t)

l
sin ψ = ψ(t) − a

l
sin ψ cos ωt. (3)

The rapidly varying component δ(t) in the above expression for ϕ(t) is obtained on the
assumption that during one period T of fast vibration of the pivot, the slow component ψ

remains almost constant. In this approximation, the time dependence of δ(t) in (3) can be
easily seen from figure 1: when the oscillating pivot A is displaced from its mid-point through
some distance z for a given angle ψ , the momentary angle ϕ acquires an additional value of
approximately −(z/ l) sin ψ .

Figure 1 shows the pendulum at the utmost displacements of the pivot in the inertial
(upper part a) and non-inertial (lower part b) frames. In the non-inertial frame associated
with the pivot, the bob of the pendulum moves up and down along an arc of a circle and
occurs in positions 1 and 2 at the instants at which the oscillating axis reaches its extreme
positions 1 and 2, respectively, shown in the upper part of figure 1. We note that the rod has
the same simultaneous orientations in both reference frames at instant 1 as well as at instant 2.
When the pivot is displaced downward to position 2 from its midpoint, the force of inertia F2

exerted on the bob is also directed downward. In the other extreme position 1, the force of
inertia F1 has an equal magnitude and is directed upward. However, the torque of the force of
inertia in position 1 is greater than in position 2 because the arm of the force in this position
is greater. Therefore, on average, the force of inertia creates a torque about the axis that tends
to turn the pendulum upward, into the vertical inverted position, in which the rod is parallel to
the direction of oscillations.

This simple qualitative physical explanation of the phenomenon of dynamic stabilization
can be supported by approximate quantitative considerations. The momentary torque of
the force of inertia Fin(t) is given by the product of this force (1) and its arm l sin ϕ(t) ≈
l sin ψ + l cos ψ δ(t). Averaging this torque over the period T of rapid oscillations of the

3
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Figure 1. Behavior of the pendulum with an oscillating axis in the inertial reference frame (a) and
in the frame associated with the pivot (b).

pivot, we can regard the slow angular coordinate ψ(t) to be constant: ψ(t) ≈ ψ . In this
approximation, the first term of the mean torque 〈Fin(t) l sin ψ〉 vanishes due to the zero
average value 〈Fin(t)〉 of the force of inertia, while the second term gives

〈Fin(t) l cos ψ δ(t)〉 = −Ma2ω2 sin ψ cos ψ〈cos2 ωt〉 = − 1
2Ma2ω2 sin ψ cos ψ. (4)

This mean torque of the force of inertia at ψ > π/2 tends to bring the pendulum into the
inverted position. It can exceed in magnitude the torque −Mgl sin ψ of the gravitational force
that tends to tip the pendulum down when the following condition is fulfilled:

a2ω2 > 2gl, or
a

l
· ω

ω0
>

√
2, or

a

l
>

√−2k, (5)

where ω0 = √
g/l is the frequency of infinitely small natural oscillations of the pendulum.

This is the commonly known (approximate) criterion of the inverted pendulum stability. In
the perspective of the forthcoming generalization and improvement, we have also expressed
in (5) this criterion in terms of parameter k, which is defined by the following expression:

k = ω2
0

ω2
= g

lω2
. (6)

This dimensionless parameter k (inverse normalized drive frequency squared), being physically
less meaningful than ω/ω0, is nevertheless more convenient for further investigation, because
the improved criterion acquires a simpler form in terms of k. Negative values of k correspond
to negative g values, which can be formally assigned to the inverted pendulum, as we have
already noted earlier.

The above-discussed approach based on the separation of slow and rapid components of
the pendulum motion is applicable for relatively small amplitudes and high frequencies of the
pivot oscillations. Hence, the commonly known expressions (5) for stability criteria are valid
only at ω/ω0 � 1 and a/l � 1.

4
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4. Subharmonic resonances of high orders and stability of the inverted pendulum

An alternative way to obtain the stability criterion for the inverted pendulum is based on the
relationship between damping oscillations about the inverted position and stationary regimes
of subharmonic oscillations [9]. This approach allows us to find a more exact and enhanced
criterion which is valid in a wider, compared with conventional criterion (5), region of the
system parameters. In particular, this improved criterion can be used for relatively large
amplitudes and low frequencies of the pivot oscillations for which the method of averaging is
inapplicable.

When the amplitude and frequency of the pivot oscillations lie within certain ranges,
the pendulum, instead of gradually approaching the equilibrium position (either dynamically
stabilized inverted position or ordinary downward position) by the process of damped slow
oscillations, can be trapped into an n-periodic limit cycle. By virtue of the ‘phase locking’
(synchronization of oscillations of the pendulum with those of the pivot, characterized by
certain relationship between their phases), the pendulum is regularly fed by additional energy
to compensate for frictional losses. The phase trajectory exactly repeats itself after n periods
T of excitation are finished. One period of such non-damping oscillations of the dissipative
pendulum equals exactly an integer number of cycles (n) of the pivot vibrations. The frequency
ω/n of the principal harmonic equals 1/n of the excitation frequency ω. This allows us to
call this phenomenon a subharmonic resonance of order n.

For the inverted pendulum with a vibrating pivot, periodic oscillations of this type were
first described by Acheson [7], who called them ‘multiple-nodding’ oscillations. Computer
simulations show that the pendulum motion in this regime reminds us of some kind of an
original dance. Similar ‘dancing’ oscillations can be executed also (at appropriate values
of the driving parameters) about the ordinary equilibrium position [8]. ‘Multiple-nodding’
oscillations can occur also in the absence of gravity about any of the two equivalent dynamically
stabilized equilibrium positions [9].

An example of such a subharmonic resonance (regular period-8 steady-state motion of
the pendulum) is shown in figure 2. One period of the pendulum motion covers exactly eight
cycles of the pivot oscillations. Poincaré sections on the phase orbit mark the mechanical state
(ϕ, ϕ̇) of the pendulum once during each cycle of the excitation. The set of these sections
(Poincaré map) consists of eight fixed points in the phase plane visited by the representing
point in a definite sequence. The sections on the spatial and phase orbits in figure 2 are marked
by integer numbers q = 0, 1, 2 . . . that correspond to the time instants on the time scale at
which q drive periods T = 2π/ω are completed.

A simple approximate derivation of conditions at which multiple-nodding oscillations are
possible can be based on the effective potential concept [8, 9]. The natural slow oscillatory
motion in the effective potential well is almost periodic (exactly periodic in the absence of
friction). The pendulum can be trapped in a limit cycle of order n if one cycle of this slow
motion covers approximately n driving periods, that is, when the driving frequency ω is
close to an integer multiple n of the natural frequency ωup or ωdown of slow oscillations near
either the inverted or the ordinary equilibrium position, respectively. For small amplitudes
of the slow oscillations, each of the minima of the effective potential (at ϕ = 0 and at
ϕ = π ) can be approximated by a parabolic well in which the smooth component of motion
is almost harmonic. Equating its frequency ωup or ωdown [9] to ω/n, we find the threshold
(low-amplitude) conditions for the subharmonic resonance of order n:

mmin =
√

2(1/n2 − k), (7)
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Figure 2. The spatial path, phase orbit with Poincaré sections, and graphs of large-amplitude
stationary period-8 oscillations. The fundamental harmonic with the frequency ω/8 dominates
the spectrum. This harmonic describes the smooth (slow) motion of the pendulum. The most
important high harmonics have frequencies 7ω/8 and 9ω/8. At large swing the third harmonic
(frequency 3ω/8) is noticeable. This spectral component reflects the non-harmonic character of
slow oscillations in the non-parabolic well of the effective potential.

where k is given by (6). As we already indicated above, negative values of the parameter k
can be treated as referring to the inverted pendulum. The limit of this expression at n → ∞
gives the same approximate criterion (5) of stability for the inverted pendulum: mmin = √−2k

(where k < 0).
Being based on a decomposition of motion on slow oscillations and rapid vibrations with

the driving frequency, equation (7) is valid if the amplitude of constrained vibration of the
axis is small compared to the pendulum length (a � l), and the driving frequency is much
greater than the frequency of small natural oscillations of unforced pendulum (ω � ω0).
These restrictions mean that we should not expect the above-discussed approach to give an
exhaustive description of the parametrically driven pendulum in all cases. In particular, this
approach cannot explain why the lower position of the pendulum becomes unstable within
certain ranges of the system parameters (in the intervals of parametric instability). It also
cannot explain the destabilization of the dynamically stabilized inverted position through
excitation of ‘flutter’ oscillations. Next, we develop a different approach that is free of the
above-mentioned restrictions.

5. Conditions of subharmonic resonances

An example of stationary subharmonic oscillations, whose period equals eight periods of the
pivot, is shown in figure 3. The graphs show angular velocity ϕ̇(t) time dependence with the
graphs of its harmonics, and the spectrum of velocity.

6
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Figure 3. Angular velocity ϕ̇(t) time dependence (with the graphs of separate harmonics) and its
spectrum for subharmonic resonance of the eighth order.

The fundamental harmonic whose period equals eight driving periods dominates the
spectrum. We may treat it as a subharmonic (as an ‘undertone’) of the driving oscillation.
This principal harmonic of the frequency ω/n describes the smooth component ψ(t) of the
compound period-8 oscillation: ψ(t) = A sin(ωt/n).

The threshold conditions for stabilization of the inverted pendulum correspond to a slow
oscillation of an indefinitely long period about ψ = π . Such an oscillation can be regarded as
a subharmonic oscillation of the inverted pendulum whose order n tends to infinity. Therefore,
the desired criterion of stability can be found from the conditions of n-order subharmonic
resonance in the limit n → ∞. Next we try to find these conditions for the subharmonic
resonance of arbitrary order n, valid, in particular, for relatively low frequencies and large
amplitudes of the excitation.

When the drive amplitude is slightly greater than the threshold for the subharmonic
resonance of order n, the pendulum angular excursion is small, and we can replace sin ψ by
ψ in expression (3) for the momentary angle of deflection ϕ(t):

ϕ(t) ≈ ψ(t) − a

l
sin ψ(t) cos ωt ≈ ψ(t) − mψ(t) cos ωt, m = a

l
. (8)

This means that the spectrum of n-periodic oscillations of a small amplitude consists of
the principal harmonic A sin(ωt/n) with the frequency ω/n and two higher harmonics of
order n − 1 and n + 1 with equal amplitudes:

ϕ(t) = A sin
(ω

n
t
)

− mA sin
(ω

n
t
)

cos ωt

= A sin
(ω

n
t
)

+
mA

2
sin

(
n − 1

n
ωt

)
− mA

2
sin

(
n + 1

n
ωt

)
. (9)

This spectral composition is in general supported by the plots in figure 3 obtained by
numerical integration of the exact differential equation (2). It may seem strange that the
harmonic component of order n with the frequency of excitation is absent in the spectrum.
However, this peculiarity is easily explained. Indeed, the rapid component cos ωt enters ϕ(t)

being multiplied by sin ψ(t) ≈ ψ(t), that is, it has a slow varying amplitude that changes
sign each time the pendulum crosses the equilibrium position. This means that the oscillation

7
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with frequency ω of the excitation is not a harmonic of ϕ(t), because harmonics of a periodic
function must have constant amplitudes.

When the pendulum crosses the equilibrium position, the high harmonics of orders n − 1
and n + 1 add in the opposite phases and almost do not distort the graph of the smooth motion
(described by the principal harmonic). Near the utmost deflections of the pendulum, the
phases of both high harmonics coincide and distort noticeably the slow component.

According to equation (9), both high harmonics have equal amplitudes (m/2)A. However,
we see from the plots in figure 3 that in the actual motion of the pendulum these amplitudes
are slightly different. Therefore, we can try to improve the approximate solution for ϕ(t),
equation (9), as well as the theoretical threshold values of m for the excitation of subharmonic
resonances, by assuming for an improved solution a similar spectrum but with unequal
amplitudes, An−1 and An+1, of the two high harmonics (for n > 2, the case of n = 2 will be
considered separately). Moreover, figure 3 shows small contributions in ϕ(t) of harmonics
with frequencies (2n − 1)ω/n and (2n + 1)ω/n, which we also include in the trial function:

ϕ(t) = A1 sin(ωt/n) + An−1 sin[(n − 1)ωt/n] + An+1 sin[(n + 1)ωt/n]

+ A2n−1 sin[(2n − 1)ωt/n] + A2n+1 sin[(2n + 1)ωt/n]. (10)

Since oscillations at the threshold of excitation have infinitely small amplitudes, we can
use instead of equation (2) the following linearized (Mathieu) equation:

ϕ̈ + 2γ ϕ̇ + ω2(k − m cos ωt)ϕ = 0, (m = a/l). (11)

Here we have used the parameter k = g/(lω2) introduced by (6). The absolute minimum of
the driving amplitude m for excitation of a subharmonic resonance is achieved in the absence
of friction at γ = 0. Substituting ϕ(t), equation (10), into this equation (with γ = 0)
and expanding the products of trigonometric functions, we obtain the following system of
approximate equations for the coefficients A1, An−1 and An+1, A2n−1 and A2n+1:

2(kn2 − 1)A1 + mn2An−1 − mn2An+1 = 0,

mn2A1 + 2[n2(k − 1) + 2n − 1]An−1 − mn2A2n−1 = 0,

−mn2A1 + 2[n2(k − 1) − 2n − 1]An+1 + mn2A2n+1 = 0, (12)

mn2An−1 + 2[n2(k − 4) + 4n − 1]A2n−1 = 0,

mn2An+1 + 2[n2(k − 4) − 4n − 1]A2n+1 = 0.

The homogeneous system (12) has a nontrivial solution if its determinant equals zero.
This condition yields an equation (not cited here) for the corresponding threshold (minimal)
normalized driving amplitude mmin = amin/l at which n-periodic mode ϕ(t) given by
expression (10) can exist. (This equation can be solved with the help of, say, Mathematica
package by Wolfram Research, Inc.) Then, after substituting this critical driving amplitude
mmin into (12), fractional amplitudes An−1/A1, An+1/A1, A2n−1/A1 and A2n+1/A1 of high
harmonics for a given order n can be found as the solutions to the homogeneous system of
equations (12).

If we ignore the contribution of harmonics with frequencies (2n−1)ω/n and (2n+1)ω/n

in ϕ(t), that is, assume A2n−1 and A2n+1 to be zero, system (12) simplifies considerably. The
corresponding approximate solution can be found in [9]. For the full system (12), the final
expressions for mmin and for the amplitudes of harmonics are too bulky to be cited here. We
have used them in figure 4 for plotting the curves of mmin as functions of k = (ω0/ω)2 (inverse
normalized driving frequency squared) corresponding to subharmonic oscillations of different
orders n (thin curves).

To verify our analytical results for subharmonic oscillations in a computer simulation,
we choose a value k = −0.3, corresponding to the drive frequency ω = 1.826 ω0 for which

8
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Figure 4. The normalized driving amplitude m = a/l versus k = (ω0/ω)2 (inverse normalized
driving frequency squared) at the lower boundary of the dynamic stabilization of the inverted
pendulum (the left curve marked as n → ∞), and at subharmonic resonances of several orders n
(see the text for details).

(This figure is in colour only in the electronic version)

the separation of slow and rapid motions of the pendulum is obviously inapplicable. The
above-described calculation for the subharmonic oscillation of order n = 8 predicts for the
threshold normalized drive amplitude mmin = amin/l a value 87.73% of the pendulum length.
The simulation presented in figure 5 perfectly confirms this theoretical prediction. The set of
Poincaré sections in the phase plane consists of eight fixed points, and the phase orbit becomes
closed after eight cycles of the pivot oscillations. The fractional amplitudes of harmonics
obtained in the simulation agree perfectly well with the theoretical prediction.

6. The lower boundary of dynamic stabilization

As we already noted, the criterion of stability for the inverted pendulum can be related to the
condition of subharmonic resonances of an infinitely large order n in the vicinity of ϕ = ±π .
Hence, the limit of mmin at n → ∞ gives an improved formula for the lower boundary of
dynamic stabilization of the inverted pendulum. If we use the approximate solution of (12) in
which the contribution of higher harmonics with frequencies (2n − 1)ω/n and (2n + 1)ω/n

is ignored, the limit n → ∞ gives for the lower boundary the value mmin = √−2k(1 − k)

in the region k < 0 (see [9]). For the solution of the full system (12) with higher harmonics
included, the limit of mmin at n → ∞ yields the following expression:

mmin = 2

√
k(k − 1)(k − 4)

3k − 8
, (13)

9
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Figure 5. Phase trajectory with Poincaré sections, angular velocity −ϕ̇(t) and angle π − ϕ(t)

time dependences (with the graphs of separate harmonics) for subharmonic resonance of the eighth
order. For convenience of presentation, the angle is measured from the inverted position.

which should be used instead of the commonly known approximate criterion mmin = √−2k

given by equation (5). The minimal amplitude mmin = amin/l that corresponds to the improved
criterion (13) of dynamic stabilization is shown as a function of k = (ω0/ω)2 by the thick left
curve marked as n → ∞ in figure 4. This curve is localized wholly in the region of negative
k values. To compare the improved criterion (13) with the commonly known criterion (5) of
the inverted pendulum stability, the latter is also shown in figure 4 by the thin curve (red in the
electronic version). We note how these two curves diverge dramatically at low frequencies
and large amplitudes of the pivot oscillations.

The other curves to the right from this boundary show the dependence on k of minimal
driving amplitudes for which the subharmonic resonances of several orders can exist (the first
curve for n = 6, and the others for n values diminishing down to n = 2 from left to right). At
negative k values, these curves give the threshold drive amplitudes for subharmonic oscillations
about the inverted position. Case k = 0 corresponds to zero gravity (or infinitely high drive
frequency). Points of intersection of the curves with the ordinate axis on this diagram give
minimal drive amplitudes for which in the absence of gravity subharmonic oscillations of
certain order, n can exist about any of the two dynamically stabilized positions (figure 2 shows
an example of such period-8 oscillations).

Continuations of the curves to positive k values correspond to subharmonic parametric
resonances (‘multiple-nodding’ oscillations) about the downward equilibrium position. The
curve for n = 2 corresponds to ordinary parametric resonance in which two cycles of excitation
take place during one full oscillation of the pendulum. In the absence of friction, the threshold
drive amplitude for this resonance tends to zero at ω → ω0/2, that is, at k → 1/4. From
figure 4 we see clearly that the curve, corresponding to n = 2 subharmonic oscillations of
the inverted pendulum (‘flutter’ mode), and the principal parametric resonance of ordinary

10
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Figure 6. Phase trajectories and time histories of gradually damping oscillations about the inverted
position just over the lower (a) and just below the upper (b) boundaries of dynamic stabilization.

(hanging) pendulum belong to the essentially same branch of period-2 regular behavior. In the
k < 0 region, this branch gives the upper boundary of dynamic stabilization for the inverted
pendulum (see section 7).

We note that the existence of subharmonic oscillations in the same region of the k–m plane
does not disprove criterion (13) of the inverted pendulum stability. Indeed, the pendulum is
trapped into the n-periodic subharmonic limit cycle (with n > 2) only if the initial state
belongs to a certain small basin of attraction that corresponds to this limit cycle. Otherwise
the pendulum eventually comes to rest in the inverted position (or to unidirectional rotation, if
the pendulum is released beyond certain critical initial deviation).

For experimental verification of the improved criterion (13) we choose again relatively
low drive frequency ω = 1.826 ω0 (k = −0.3) for which distinctions between the conventional
and improved criteria are especially noticeable. At this frequency (13) gives for the lower
boundary of stability, the drive amplitude amin = 0.868 l. The upper boundary (see
section 7) at k = −0.3 equals amax = 0.929 l. Computer simulations in figure 6 show
how within this narrow region of stability at a = 0.875 l (just over the lower boundary,
figure 6(a)) and at a = 0.925 l (just below the upper boundary, figure 6(b)), the pendulum,
being initially deviated through 10◦ and released with zero velocity, returns gradually to the
inverted position. If the initial deflection exceeds some critical value, at first the pendulum
goes slowly further from the vertical, then executes random revolutions to one and the other
side, and eventually (after a long ‘tumbling’ chaotic transient) becomes trapped into period-
1 unidirectional rotation. The closer the drive parameters to the boundary of stability, the
smaller this critical deviation. For k = −0.3, m = 0.875 and Q = 50 the initial deviation
from the inverted position should not exceed 14◦. Friction reduces the basin of attraction of
the equilibrium in the inverted state: at Q = 20 the initial deviation should not exceed 10◦.

11
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Figure 7. Chaotic oscillations below the boundary of stability.

We note the peculiarities of the transients shown in figure 6 that lead to the state of
rest in the inverted position. In both cases, Poincaré sections, corresponding to time instants
tq = qT (q = 0, 1, 2 . . . , T = 2π/ω—period of the pivot oscillations), are located near the
ϕ-axis and gradually condense, approaching the origin of the phase plane. Near the lower
boundary of stability, the graph of time history in figure 6(a) resembles, during a limited time
interval, the corresponding graph of a subharmonic resonance (‘multiple-nodding’ oscillation)
of some high order (compare with figure 5): the pendulum executes many ‘nods’ on one
side of the inverted position, then on the other side with a somewhat smaller amplitude, and
so on, approaching gradually the vertical. These intermittent damping ‘nods’ are described
by one-sided shrinking loops of the phase orbit that pass from one side of the phase plane
to the other each time the pendulum crosses the vertical line. Near the upper boundary,
the graph of time history and the phase trajectory (figure 6(b)) resemble those of a ‘flutter’
oscillation (see section 7): one cycle of the pendulum covers approximately two drive periods
and is represented by a double-lobed phase orbit (compare with figure 10). This orbit shrinks
gradually around the origin of the phase plane.

At smaller than 0.868 l values of the drive amplitude the inverted pendulum is unstable.
Figure 7 shows how at k = −0.3 and a = 0.800 l the pendulum, being released at only 1◦

deviation from the inverted position, occurs eventually in a chaotic regime (‘tumbling’ chaos).
The graphs in figure 7 show the initial stage of the time history. The set of Poincaré sections
in the phase plane gives impression of the further random behavior, characterized by a strange
attractor. We note that the inverted pendulum at these drive parameters should be stable
according to conventional criterion (5), which at k = −0.3 gives a considerably smaller value
amin = 0.775 l (compare with the improved value amin = 0.868 l) for the lower boundary of
stability.

7. The upper boundary of dynamic stabilization

The curve n = 2 in figure 4 (its part in the k � 0 region) corresponds to the upper boundary
of dynamic stabilization for the inverted pendulum: after a disturbance the pendulum does not

12
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come to rest in the up position, no matter how small the release angle, but instead eventually
settles into a limit cycle, executing finite amplitude steady-state oscillation (about the inverted
vertical position). The period of such an oscillation is twice the driving period, and its swing
grows as the excess of the drive amplitude over the threshold amax is increased.

This loss of stability of the inverted pendulum was first described in 1992 by Blackburn
et al [5] and demonstrated experimentally in [6]. The authors [5] called these limit-cycle
oscillations the ‘flutter’ mode. Because the ‘flutter’ mode and the principal parametric
resonance belong to the same branch of period-2 stationary regime (this unambiguously
follows from figure 4), the same analytical method can be used to calculate conditions of
their excitation. Simulations show a very simple spectral composition for both, namely a
superposition of the fundamental harmonic whose frequency ω/2 equals half the driving
frequency, the third harmonic with the frequency 3ω/2, and maybe a tiny admixture of the
fifth harmonic:

ϕ(t) = A1 cos(ωt/2) + A3 cos(3ωt/2) + A5 cos(5ωt/2). (14)

The phases of harmonics in (14) correspond to pivot oscillations in the form z(t) =
a cos ωt . Substituting ϕ(t) into the differential equation (11) with γ = 0 and expanding the
products of trigonometric functions, we obtain an expression in which we should equate to
zero the coefficients of cos(ωt/2), cos(3ωt/2), and cos(5ωt/2). Thus, we get a system
of homogeneous equations for the coefficients A1, A3 and A5 of harmonics in the trial
function (14):

(4k − 2m − 1)A1 − 2mA3 = 0,

−2A1 + (4k − 9)A3 − 2mA5 = 0, (15)

−2mA3 + (4k − 25)A5 = 0.

This system has a nontrivial solution when its determinant equals zero. If we neglect the
contribution of the fifth harmonic in ϕ(t), equation (14), that is, let A5 = 0, we get the
following approximate expression for the upper boundary of stability:

mmax = 1
4 [

√
(4k − 9)(20k − 13) + 4k − 9]. (16)

If the fifth harmonic is included, the requirement for the nontrivial solution to the
system (15) yields a cubic equation for the desired normalized critical driving amplitude
amax/l = mmax. The relevant root of this equation (too cumbersome to be shown here) is
used for plotting the curve n = 2 in figure 4. However, for the interval of k values under
consideration (−0.8–0.6), the approximate expression (16) gives a curve which is visually
indistinguishable from the curve n = 2 in figure 4.

The curve n = 2 intersects the ordinate axis at m ≈ 3(
√

13 − 3)/4 = 0.454. This
case (k = 0) corresponds to the above-mentioned limit of a very high driving frequency
(ω/ω0 → ∞) or zero gravity (ω0 = 0), so that m = 0.454 gives the upper limit of stability
for each of the two dynamically stabilized equivalent equilibrium positions: if m > 0.454 at
g = 0, the flutter mode is excited.

The lower and upper boundaries of the dynamical stability gradually converge while the
drive frequency is reduced: figure 4 shows that the interval between mmin and mmax shrinks
to the left, when |k| is increased. Both boundaries merge at k ≈ −1.41 (ω ≈ 0.8423ω0) and
m ≈ 2.451. The diminishing island of the inverted state stability vanishes in the surrounding
sea of chaotic motions.

The improved theoretical values for the lower and upper boundaries of stability are
obtained here for the frictionless system (γ = 0). Computer simulations (based on
numerical integration of the exact differential equation (2)) show that relatively weak friction
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Figure 8. Dynamical stability at low frequency and large amplitude of the drive.
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Figure 9. Period-2 oscillation of a large amplitude about the inverted position: the phase orbit,
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graphs of separate harmonics).

(Q � 15–30) does not influence noticeably these boundaries. This can be easily explained
physically if we take into account that in conditions of dynamical stabilization (sufficiently
large frequency or amplitude of excitation), the role of inertial forces is much more important.
In contrast, the basin of attraction for the pendulum equilibrium in the inverted position is
sensitive to friction: the interval of initial deviations within which the pendulum returns
eventually to the inverted position becomes smaller as friction is increased.

For further experimental verification of the improved values for both upper and lower
boundaries of the inverted pendulum stability, and for comparison of the criterion (13) with
the conventional one (5), we now choose k = −0.5 (drive frequency ω = 1.4142 ω0).
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Figure 10. The phase orbit and graphs of ϕ(t) and ϕ̇(t) for ‘flutter’ oscillations of the inverted
pendulum just over the upper boundary of stability.

For this k value criterion, (13) yields mmin = 1.1920 (119.20% of the pendulum length),
while (5) gives mmin = 1.00 (amin = l) – 100%. The theoretical value for the upper boundary
at k = −0.5 is mmax = 1.2226 (122.26%), while according to (16) mmax = 1.2265 (122.65%).
Simulations show that below m = 115.68%, the motion is chaotic (‘tumbling’ chaos), at
m = 115.69–119.19% the pendulum, after a long chaotic transient, is trapped in period-1
non-uniform unidirectional rotation (in contradiction with conventional criterion (5), which
predicts stability of the inverted position), and only in the interval m = 119.20–122.27% the
pendulum, being released at a small deviation from the inverted position, eventually comes to
rest, in exact accordance with the improved criterion (13). Then, over the upper boundary of
stability, at m = 122.28–123.02% the pendulum occurs in a ‘flutter’ mode; at m = 123.03–
147.01% executes unidirectional rotation; at m = 147.02–150.6% the pendulum, after a long
chaotic transient, comes to period-2 oscillation about the inverted position with an amplitude
of approximately 260◦ (similar to the oscillation shown in figure 9); at m � 150.7% the
pendulum eventually settles into the unidirectional rotation.

Further simulations refer to the case of especially low frequency of the pivot oscillations:
ω = ω0 (k = −1). The theoretical values for the lower and upper boundaries of stability
for this frequency are mmin = 1.9069 (190.69% of the pendulum length) and mmax = 1.9138
(191.38%), respectively. Figure 8 shows how in this narrow interval the pendulum, being
released at 178◦, first goes further from the vertical for about 6◦ maximum angular excursion
and then gradually approaches the inverted position by the process of irregular damping
oscillations. The basin of attraction for equilibrium in the inverted position is rather small: at
slightly different initial conditions, the pendulum, after a long transient, occurs in a steady-
state large-amplitude (approximately 255◦) period-2 oscillation about the inverted position.
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The angular excursion of the pendulum from one extreme position to the other takes one
period of excitation and is greater than a full circle (about 510◦). Therefore, otherwise we can
treat this regime as alternating clockwise and counterclockwise revolutions. The phase orbit
(with two fixed points of Poincaré sections) and the spatial trajectory of the pendulum bob in
figure 9 give an impression of such an extraordinary pendulum motion, which coexists with
the state of rest in the inverted position. Just over the upper boundary of stability (191.38%),
the pendulum eventually settles into the ‘flutter’ mode (figure 10).

8. Concluding remarks

The commonly known criterion for dynamic stabilization of the inverted pendulum is usually
derived by separation of rapid and slow motions of the pendulum. This approach and related
concept of the effective potential for the slow motion are very useful for physical explanation
of the dynamic stabilization, as well as of the origin of subharmonic resonances of high
orders. However, this separation of rapid and slow motions is admissible only at sufficiently
high frequency and small amplitude of the pivot oscillations.

An improved criterion for the lower boundary of dynamic stabilization, valid in a wider
region of frequencies and amplitudes of the pivot oscillations, including values for which the
method of separation of rapid and slow motions is inapplicable, is obtained by establishing a
close relationship between the phenomenon of dynamic stabilization of the inverted pendulum
and subharmonic resonances.

The upper boundary of stabilization is related to the excitation of period-2 ‘flutter’
oscillation, which is a complete analog of the principal parametric resonance. Both
phenomena belong to the same branch of stationary period-2 oscillations, and the criterion for
destabilization of the inverted position is obtained by the same method as for the excitation
of ordinary parametric resonance. Results of corresponding analytical calculations agree
perfectly well with computer simulations.

References

[1] Stephenson A 1908 On an induced stability Phil. Mag. 15 233–6
[2] Kapitza P L 1951 Dynamic stability of the pendulum with vibrating suspension point Sov. Phys.—JETP 21

588–97 (in Russian)
Kapitza P L 1965 Collected Papers of P. L. Kapitza vol 2, ed D Ter Haar (London: Pergamon) pp 714–26

[3] Landau L D and Lifschitz E M 1988 Mechanics (Moscow: Nauka) pp 123–5 (in Russian)
Landau L D and Lifschitz E M 1976 Mechanics (New York: Pergamon) pp 93–5
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