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Simple deterministic nonlinear mechanical systems such as the parametrically or directly
driven pendula exhibit a surprisingly large variety of stable periodic and chaotic motions. During
the last decades, much insight has been gained into the nature of these phenomena. Although the
apparent contradiction between determinism and randomness is now rather well understood
mathematically, perhaps a better introduction to chaos is a plain demonstration of a simple me-
chanical system in action. In order to observe chaotic behavior, which is possible only in nonlin-
ear systems, numerical simulation is an essential tool. The principal aim of this contribution is to
present some part of a vast collection of various simple and very complicated, sometimes coun-
terintuitive, regular (periodic, phase-locked to the external drive) and chaotic (pseudo random)
motions discovered recently in computer simulations of simple physical systems.

An ordinary rigid planar pendulum whose axis is driven sinusoidally in the vertical direc-
tion is a paradigm of contemporary nonlinear dynamics. This mechanical system is also interest-
ing because the differential equation of the pendulum is frequently encountered in various prob-
lems of modern physics. Mechanical analogues of physical systems allow a direct visualization
and thus can be very useful in gaining an intuitive understanding of complex phenomena (see,
for example, [1]). A mode of chaotic motion of such a pendulum is shown in Figure 1.
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Figure 1. Chaotic oscillations of the parametrically driven pendulum. The spatial trajectory of the pendulum’s bob
and the phase trajectory with Poincare sections (left), time-dependent plots (right).

This chaotic motion is purely oscillatory, and nearly (but not exactly) repeats itself after
each six driving periods. The six bands of Poincare sections make two groups of three isolated
islands each. The representing point visits these groups in alternation. It also visits the islands of
each group in a quite definite order, but within each island the points continue to bounce from
one place to another without any apparent order.

The six-band chaotic attractor has a rather extended (and very complicated in shape) do-
main of attraction in the phase plane of initial states. Nevertheless, at these values of the control
parameters the system exhibits multiple asymptotic states: this chaotic attractor coexists with
several periodic regimes. Figure 2 illustrates a regular steady-state oscillation whose period (as
well as the period of its fundamental harmonic) equals 4 driving cycles. However, the period of
the harmonic component that dominates the spectrum equals two driving periods because the
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general character of oscillations reminds the principal parametric resonance. This period-4 mode
is excited if the initial state belongs to a different region of the phase plane than the domain of
attraction of the chaotic regime. Other initial conditions (at the same parameters) bring the pen-
dulum to familiar period-2 steady-state parametric oscillations.
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Figure 2. Regular oscillations occurring at the same values of parameters as the chaotic oscillations shown in Fig.1.
Their period equals 4 driving cycles. The graphs of oscillations are shown together with their harmonic components.

The behavior of the parametrically excited pendulum is much richer in various modes
than we can expect for such a simple physical system relying on our intuition. Other numerous
kinds of its complicated regular and chaotic motions are simulated in a computer program avail-
able in the web [2]. Those include, in particular, subharmonic resonances (multiple-periodic sta-
tionary states), for which a clear physical explanation is suggested in [3] and an approximate
guantitative theory is developed. Also subharmonic resonances of fractional orders are described
and explained for the first time in [3]. However, many of the discovered modes (see [2]) are still
waiting a plausible physical explanation.

A common way to investigate the routes to chaos in a nonlinear system consists of a slow
variation of some parameter at fixed values of all other parameters. If we start from some regular
(periodic) mode and then, without interrupting the motion, let vary gradually, for example, the
driving frequency or amplitude (or the damping factor), we can observe intriguing sequences of
bifurcations, including the symmetry breaking phenomena, period doubling cascades, etc., which
can bring the system to some chaotic regime described by a strange attractor in the phase plane.
However, numerous regular and chaotic regimes do exist, which cannot be reached in this way.
Even if the required values of all the parameters are encountered during the sweeping, this may
be insufficient for excitation of the mode in question, because the mode may be characterized by
some (narrow) domain of attraction in the phase space of initial states. As a rule, a nonlinear sys-
tem can live in multiple different stable modes at the same values of all the controlling parame-
ters (multistability). In other words, different types of stable response coexist. Which one of
these asymptotic modes is realized in a certain experiment, crucially depends on the starting
conditions.
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