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Abstract. The paper deals with forced oscillations of a torsion spring pendulum
excited by an external square-wave driving torque. Two different ways of
determining the steady-state response of the oscillator to a non-harmonic driving
force are described and compared. Behavior of this familiar mechanical system can
help a student to better understand why and how an electromagnetic oscillatory
LCR-circuit transfers the square-wave voltage from input to output with a
distortion of its shape.

1. Introduction: the physical system

Most textbooks on general physics treat forced oscillations in a linear system under a
sinusoidal driving force rather extensively (see, for example, Berkeley Physics Course
[1], [2], [3]). The general case of a periodic but non-sinusoidal excitation of a linear
oscillator is usually only mentioned with a reference to the principle of superposition
and an expansion of an arbitrary periodic force as the Fourier series of sine and cosine
functions. In this paper an alternative approach to the problem of forced oscillations
is suggested and compared with the traditional treatment.

To study forced oscillations caused in a linear system by a non-sinusoidal periodic
external influence, we employ a simplified model of a torsion spring oscillator. Its
schematic image is shown on the left side of Fig. 1. The oscillator is similar to the
balance devices of ordinary mechanical watches—a balanced massive rotor 1 (flywheel)
attached to one end of an elastic spiral spring 2. The spring provides a restoring
torque proportional to the angular displacement of the flywheel from the equilibrium
position. To provide an external excitation, the other end of the spiral spring is
attached to a driving rod 3 that can be turned about the axis common with the axis
of the flywheel. When the rod is constrained to move periodically to and fro about
some middle position, an additional periodic torque is exerted on the flywheel. This
mode of excitation is called kinematical because it is characterized by a given motion
of some part of the system rather than by a given external torque.

An external square-wave torque can be realized by abruptly displacing the driving
rod alternately in opposite directions through the same angle in equal time intervals.
We suppose that the displacements of the rod and thus of the equilibrium position of
the flywheel occur so quickly that there is no significant change in either the angular
position or velocity of the flywheel during the displacement of the rod.

The right-hand side of Fig. 1 shows a LCR-oscillatory circuit that can be regarded
as an electromagnetic analogue of the mechanical device. Both systems are described
by identical differential equations and thus are dynamically isomorphic. However,
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Figure 1. Schematic image of the torsion spring oscillator (left) and its
electromagnetic analogue—LCR-oscillatory circuit excited by the square-wave
input voltage (right).

the mechanical system has a definite didactic advantage for exploration of forced
oscillations because it allows us to observe a direct visualization of motion.

This system is simulated in one of the programs of the educational software
package PHYSICS OF OSCILLATIONS developed by the author [4]. All the graphs
that illustrate the paper are obtained with the help of this program.

2. The differential equation of forced oscillations

When the system is at rest, the rod of the flywheel is parallel to the driving rod and
the spring is not strained. The zero point of the dial indicates the central position of
the exciting rod (the vertical position in Fig. 1). The angle of deflection ϕ indicates
the momentary position of the flywheel. When the rod is deflected from the vertical
position through an angle φ, the spiral spring is twisted from its unstrained state
through the angle ϕ−φ. The spring then exerts a torque −D(ϕ−φ) on the flywheel,
where D is the torsion spring constant. Thus, the differential equation of rotation of
the flywheel, whose moment of inertia about the axis of rotation is I, is given by

Iϕ̈ = −D(ϕ− φ). (1)

We transfer −Dϕ (the part of the elastic torque which is proportional to ϕ) to
the left side of Eq. (1), divide the resulting equation by I, and introduce the value
ω0 =

√
D/I, whose physical meaning is the frequency of natural oscillations in the

absence of friction. Thus we obtain:

ϕ̈ + ω2
0ϕ = ω2

0φ. (2)

The right-hand side ω2
0φ of this equation can be treated as an external torque

(divided by I ) caused by the displacement of the driving rod from its central position
through an angle φ. We let the instantaneous displacements of the rod occur
alternately to the right and to the left after the lapse of equal time intervals T/2,
so that T is the full period of the external non-sinusoidal action, repeated indefinitely.
In the presence of viscous friction, a term 2γϕ̇ proportional to the angular velocity
ϕ̇ should be added to Eq. (2), in which the damping constant γ characterizes the
strength of viscous friction in the system:

ϕ̈ + 2γϕ̇ + ω2
0ϕ =

{
ω2

0φ0, (0, T/2),
−ω2

0φ0, (T/2, T ). (3)
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Forced oscillations of the electric charge q stored in a capacitor of a resonant
series LCR-circuit (see the right-hand side of Fig. 1) excited by a square-wave input
voltage Vin(t) obey the same differential equation as does the forced oscillation of a
mechanical torsion spring oscillator excited by periodic abrupt changes of position of
the driving rod:

q̈ + 2γq̇ + ω2
0q = ω2

0CVin(t). (4)

In this equation ω0 is the natural frequency of oscillations of charge in the circuit
in the absence of resistance. It depends on the capacitance C of the capacitor and
the inductance L of the coil: ω0 = 1/

√
LC. The damping constant γ = R/(2L)

characterizes the dissipation of electromagnetic energy occurring in a resistor whose
resistance is R (see, for example, Ref. [3], Chapter 8).

Because of this similarity, the mechanical system described above enables us to
give a very clear explanation for transformation of the square-wave input voltage
Vin(t) = ±V0 into the output voltage Vout(t) = VC(t) = q/C (voltage across the
capacitor C), whose time dependence differs considerably from the piecewise constant
input voltage. The output voltage VC(t) is analogous to the angular displacement ϕ(t)
of the rotor, while the alternating electric current I(t) = q̇(t) in the circuit is analogous
to the angular velocity ϕ̇(t). However, some caution is necessary in interpreting the
analogy between the mechanical oscillator and the electric LCR-circuit with respect
to the energy transformations [5].

3. Harmonics of the driving force and of the steady-state response

Because of friction, natural oscillations of the flywheel gradually damp out, and a
steady-state periodic motion of the flywheel is eventually established with a period
equal to the period T of the driving force. The greater the decay time, τ = 1/γ, of
natural oscillations, the longer the duration of this transient process.

In the case of a sinusoidal driving torque, the steady-state oscillations of the
flywheel acquire not only the period of the external action but also the same sinusoidal
time dependence. However, a periodic driving force whose time dependence is
something other than a pure sinusoid, produces a steady-state response which has
the same period but whose time dependence differs from that of the driving force.

We consider below two different ways of determining the steady-state response
of the oscillator to a non-harmonic square-wave driving force. One (traditional) way
is based on decomposition of the external force time dependence in a Fourier series,
i.e., on the representation of this force as a superposition of sinusoidal components
(harmonics). Because the differential equation of motion for the spring oscillator is
linear, each sinusoidal component of the driving torque (the input harmonic) produces
its own sinusoidal response of the same frequency in the motion of the flywheel
(the output harmonic), whose amplitude and phase can be calculated separately.
The corresponding formulas are the same as for the familiar case of monoharmonic
excitation (see, for example, [1], [3], or [6]). The net steady-state forced motion of
the flywheel can be found as a superposition of these individual responses. Since
the relative contributions of harmonic components to this response differ from their
contributions to the driving force, the graph of motion of the flywheel has a different
shape than that of the driving rod.

In particular, it may occur that one of the input harmonics with relatively small
amplitude induces an especially large amplitude in the output oscillations. Such is



Square-wave excitation of a linear oscillator 4

the case when the frequency of this harmonic is close to the natural frequency ω0

of the oscillator since forced oscillations caused by this sinusoidal force occur under
conditions of resonance. On the other hand, the relative contributions of the input
harmonics whose frequencies lie far from the maximum of the resonance curve, are
considerably attenuated in the output oscillations. The oscillator responds selectively
to sinusoidal external forces of different frequencies. The phenomenon of resonance
occurs only if the input spectrum contains a harmonic component whose frequency is
close to the natural frequency of the oscillator.

Differences between the time dependence of output steady oscillations and that of
the input driving force (distortions of the signal from input to output) are caused not
only by changes in the relative amplitudes of different harmonics but also by changes
in their phases from input to output. In the case of weak damping the dependence
of phase on frequency is nearly a step-function. Specifically, all harmonic components
whose frequencies ωk = kω = (2π/T )k (T – driving period) are lower than the natural
frequency ω0, contribute to the output oscillations of the flywheel nearly in the same
phases as they do to the input driving force. But harmonics whose frequencies ωk are
higher than the natural frequency contribute to the output oscillations with nearly
inverted phases. The sinusoidal component whose frequency equals ω0 lags in phase
by π/2 behind the corresponding harmonic in the spectrum of the driving force.

The analytic expression for Eq. (3) in which the square-wave right-hand side has
been Fourier decomposed has the following form:

ϕ̈ + 2γϕ̇ + ω2
0ϕ =

∞∑

k=1, 3, 5...

4φ0ω
2
0

πk
sin ωkt. (5)

The Fourier series of the square-wave external force in Eq. (3) contains only odd-
number harmonics with frequencies ωk = kω (k = 1, 3, 5, . . . ), where ω = 2π/T is
the frequency of the driving force. We note that the amplitudes of harmonics of the
square-wave function decrease rather slowly, as 1/k, with the increase of their index
k and their frequency ωk: The frequency spectrum of the square-wave driving force is
rich in harmonics.

For each sinusoidal term in the right-hand side of Eq. (5) the periodic particular
solution is given by commonly known expressions (see, for example, [6]). Adding these
solutions, we get the following time dependence of the angular displacement, ϕ(t), for
steady-state forced oscillations under the square-wave excitation:

ϕ(t) =
∞∑

k=1, 3, 5...

4φ0

πk

ω2
0√

(ω2
0 − ω2

k)2 + 4γ2ω2
k

sin(ωkt + αk), (6)

where the phases αk of the individual harmonics are determined by

tan αk =
2γωk

ω2
k − ω2

0

. (7)

Equations (6) and (7) display clearly the above discussed peculiarities of the
oscillator response to the square-wave driving action of the rod. A resonant response
from the oscillator occurs each time the denominator in one of the terms of the sum
in Eq. (6) is minimal, that is, when the frequency ωk of one of the harmonics of the
external force is equal to the resonant frequency ωres of the oscillator:

ωres =
√

ω2
0 − 2γ2 ≈ ω0

(
1− γ2

ω2
0

)
.
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The latter approximate expression for ωres is valid for a weakly damped oscillator
(γ ¿ ω0), whose quality factor Q is large (Q = ω0/2γ À 1). Since the fractional
difference between ωres and ω0 is of the second order in the small parameter γ/ω0 =
1/(2Q), in most cases of practical importance we need not distinguish the resonant
frequency from the natural one and can assume that ωres = ω0. For ωk < ω0 Eq. (7)
yields αk ≈ 0, which means that the corresponding harmonic contributes to the output
oscillations in the same phase as to the input square-wave force. On the contrary, for
ωk > ω0 Eq. (7) yields αk ≈ −π, and this harmonic component enters into the output
oscillations with the inverted phase.

Figure 2. Transformation of the spectrum of the input square-wave external
torque into the spectrum of steady-state output oscillations (see text for detail).

Figure 2 illustrates the transformation of the input spectrum of an external
square-wave force into the output spectrum of the steady-state response of the
oscillator for the case in which the driving period equals three natural periods. Since
the third harmonic occurs under the maximum of the resonance curve (see the left
upper corner in Fig. 2), this harmonic dominates in the output spectrum. The time-
dependent graphs of the input and output harmonics and of their sums are shown in
the right lower part of Fig. 2.

When the frequency of the sinusoidal external force is slowly varied, the resonant
steady-state response of the oscillator can occur at only one value of the driving
frequency ω = ωres, the resonant frequency of the oscillator. In other words, in the
case of sinusoidal excitation there is only one resonance, and it occurs when the driving
period T equals the natural period T0 of the oscillator. However, in the case of the
square-wave excitation, resonance occurs each time the driving period T is an odd-
number multiple of the natural period T0 of the oscillator, that is, when T = (2n+1)T0,
where n = 0, 1, 2, . . . Resonances, for which n ≥ 1, occur when the frequency of one
of the odd harmonics of the driving torque approaches the resonant frequency of the
oscillator. Each resonance corresponds to a certain harmonic in the input spectrum.

Generalizing, we note that a linear oscillator with a sharp resonance curve (and
given resonant frequency) appreciably responds only to a certain single harmonic
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component of an arbitrarily complex external force. In this respect such an oscillator
can be regarded as a spectral instrument, which selects a definite spectral component
of an external action. That is, if we cause the natural frequency of oscillator to
“sweep” through a range of frequencies, such oscillator responds resonantly each time
its natural frequency coincides with one of the harmonic frequencies in the Fourier
expansion of the external force. In other words, a sweep-frequency oscillator with a
large quality factor provides us with a means by which a complex periodic input can
be physically decomposed into its Fourier components.

The mathematical representation of the square-wave function in the right-hand
side of Eq. (3) is not unique. The function can be represented as a sum of other
functions in many different ways. That is, it is possible to express the external action
either as a Fourier series of sine and cosine functions or as a series of other complete sets
of functions. From the mathematical point of view, all such decompositions are equally
valid. The usefulness of the Fourier decomposition in the case under consideration is
associated with physics. It is related to the capability of a linear harmonic oscillator to
perform this decomposition physically. When the phenomenon of resonance is used as
a means of experimental investigation, only the Fourier representation of the analyzed
complex process is adequate and expedient.

4. Forced oscillations as natural oscillations about the alternating
equilibrium positions

Another way to obtain an analytic solution to the differential equation of motion (3)
for steady-state oscillations forced by the square-wave external torque is based on
viewing the steady-state motion as a sequence of free oscillations, which take place
about an equilibrium position that periodically alternates between +φ0 and −φ0. For
the first half-cycle, from t = 0 to T/2, the general form of the dependence of ϕ(t) on
t can be written as:

ϕ(t) = φ0 + Ae−γt cos(ω1t + θ), (0, T/2), (8)

where ω1 =
√

ω2
0 − γ2 is the frequency of damped natural oscillations, and A and θ

are arbitrary constants of integration determined by conditions at the beginning of
the half-cycle. During the next half-cycle (T/2, T ) the time dependence of ϕ(t) has
the form:

ϕ(t) = −φ0 −Ae−γ(t−T/2) cos(ω1(t− T/2) + θ), (T/2, T ), (9)

where the constants A and θ have the same values as they do in Eq. (8). These values
follow from the fact that, in steady-state oscillations, the graph of time dependence
during the second half-cycle must be the mirror image of the graph for the first half-
cycle, shifted by T/2 along the time axis. This relationship is clearly seen in Fig. 3,
where the graphs correspond to T = 3T0.

The constants A and θ for any given values of T , φ0, and γ can be calculated
from the condition that during the instantaneous change in the position of the driving
rod at t = T/2 the angular deflection and the angular velocity of the flywheel do not
change. In other words, we should equate the right-hand sides of Eqs. (8) and (9)
and their time derivatives at t = T/2. These conditions give us two simultaneous
equations for A and θ. Solving the equations we find:

tan θ = − e−γT/2[ω1 sin(ω1T/2) + γ cos(ω1T/2)] + γ

e−γT/2[ω1 cos(ω1T/2)− γ sin(ω1T/2)] + ω1
(10)



Square-wave excitation of a linear oscillator 7

Figure 3. Graphs of the time dependence of the deflection angle and the angular
velocity at resonant steady-state oscillations for T = 3T0.

and

A = − 2φ0

e−γT/2 cos(ω1T/2 + θ) + cos θ
. (11)

Equations (8)–(11) describe the steady-state motion only during the time interval
from 0 to T . That is, if we substitute a value of t greater than T into these equations,
they do not give the correct value for ϕ(t). Nevertheless, we can find the value of
ϕ(t) for an arbitrary t by taking into account that ϕ(t) is a periodic function of t:
ϕ(t + T ) = ϕ(t). Thus, having obtained the graph of ϕ(t) for the time interval [0, T ],
we can simply translate the graph to the adjacent time intervals [T, 2T ], [2T, 3T ],
and so on.

Figure 4. Damped oscillations about alternating displaced equilibrium positions
at resonant steady-state oscillations for T = 7T0.
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The treatment of forced oscillations as natural oscillations about alternating
equilibrium positions provides especially clear explanation of a rather complex
behavior of the oscillator under the square-wave force whose period is considerably
longer than the natural period. Figure 4 shows the screen image displayed by the
computer program [4] simulating the steady-state forced oscillations at T = 7T0 and
relatively strong friction (Q = 5). The upper left-hand part of the screen shows
the phase trajectory. The graph that displays the time dependence of the angular
deflection is situated below the phase trajectory. The time axis of this graph is directed
vertically down. Such an arrangement of the time-dependent graphs and the phase
trajectory facilitates comparing the graphs of the angular position and velocity with
the motion of the representing point along the phase trajectory. We see clearly how
after each in turn abrupt displacement of the driving rod, the flywheel makes several
natural oscillations of gradually diminishing amplitude about the new equilibrium
position. These natural oscillations replace both abrupt fronts of each rectangular
impulse distorting thus its shape from input to output.

5. Transient processes under the square-wave external torque

The above treatment of forced oscillations excited by a square-wave external torque
as natural oscillations about alternating equilibrium positions enables us to clearly
understand many characteristics of both steady-state oscillations and transient
processes. In particular, it clarifies the physical reason for the resonant growth of
the amplitude when the period of the driving force equals the natural period of the
oscillator or some odd-number multiple of that period.

Suppose that before the external square-wave torque is applied, the oscillator
has been at rest in its equilibrium position, ϕ = 0. When, at t = 0, the driving
rod abruptly turns into a new position, φ0, the flywheel, initially at rest, begins to
execute damped natural oscillations about the new equilibrium position at φ0 with
the frequency ω1 ≈ ω0. This oscillation begins with an initial velocity of zero. As
long as the rod remains at φ0, the time dependence of the angular displacement of the
flywheel, ϕ(t), is

ϕ(t) = φ0 − φ0 exp(−γt) cos ω0t.

That is, the flywheel, starting out with ϕ = 0 at t = 0, passes through the
equilibrium position ϕ = φ0 when ω0t = π/2, and reaches its extreme deflection of
nearly ϕ = 2φ0 at ω0t = π. (Damping prevents it from quite reaching ϕ = 2φ0.) If
T = T0, the flywheel arrives at the extreme point ϕ ≈ 2φ0 (and its angular velocity
becomes zero) just at the moment t = T/2, when one half of the driving period has
elapsed. At this moment the rod instantly moves to the new position −φ0, and the
next half-cycle (T/2, T ) of the natural oscillation starts again with an angular velocity
of zero, but its initial angular displacement from the new central point is nearly 3φ0.
This value is nearly 2φ0 greater than in the preceding half-cycle. It would be exactly
2φ0 greater in the absence of friction, and the amplitude of oscillation would increase
by the value 4φ0 during each full cycle of the external force, provided the driving
period equals the natural period of the oscillator (or some odd-number multiple of
that period).

In a real system such an unlimited growth of the amplitude linearly with time is
impossible because of friction. The growth of the amplitude is approximately linear
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during the initial stage of the transient process. This resonant growth gradually
decreases, and steady-state oscillations are eventually established, during which the
increment of the amplitude occurring at every instantaneous displacement of the
driving rod is nullified by an equal decrement caused by viscous friction during the
intervals between successive jumps.

Such a process of gradual growth of the amplitude, which eventually results in
oscillations of a constant amplitude, is depicted very clearly by the phase trajectory
shown in left-hand upper corner of Fig. 5. Its first section is a portion of a spiral that
starts at the origin of the phase plane and winds around a focus located at the point
(+φ0, 0). The next section is a segment of a similar spiral that winds around the
symmetrical point (−φ0, 0).

Figure 5. Graphs of the time dependence of the position angle and of the angular
velocity, together with the phase diagram, for the transient process of excitation
from equilibrium for resonance occurring at T = 3T0.

If the period of excitation T equals an odd-numbered multiple of the natural
period T0, the transition from one spiral to the adjoining spiral (centered at the other
focus) occurs at a maximal distance along ϕ-axis from the new focus. As a result, the
new loop of the phase trajectory turns out to be larger than the preceding one. Such
untwisting of the phase trajectory continues at a decreasing rate until the expansion
of loops due to the alternation of the foci is nullified by their contraction caused by
viscous friction. Eventually a closed phase trajectory is formed which corresponds to
steady-state oscillations. This curve has a central symmetry about the origin of the
phase plane. It consists of two branches each representing damped natural oscillations
about one of the two alternating symmetrical equilibrium positions. For T = 7T0 such
a closed phase trajectory is shown in Fig. 4 (left-hand upper corner).

Any transient process in a linear system can be represented as a superposition
of the periodic solution to Eq. (3) that describes the steady-state oscillations, and a
solution of the corresponding homogeneous equation (with the right-hand side equal
to zero) that describes the damped natural oscillations. The simulation program [4]
displays such a decomposition of the transient process if the corresponding option is



Square-wave excitation of a linear oscillator 10

chosen (see Fig. 5). One more example of such a decomposition in which the graph of
damped natural oscillations is singled out especially clearly is given by Fig. 6 (curve
2 corresponds to the contribution of natural oscillations).

Figure 6. Graphs of the angular position (upper part) and velocity (lower part)
showing the decomposition of the transient (curve 1) onto the damping natural
oscillations (curve 2) and the periodic steady-state oscillations (curve 3).

6. Estimation of the amplitude of steady oscillations

Next we evaluate the maximal angular displacement, ϕm, attained in the steady-state
oscillations. The value ϕm certainly can be found from exact Eqs. (8)–(11). However,
such a calculation is rather complicated. Using the simple arguments suggested in the
previous sections, we can avoid tedious calculations, at least for some special cases.

We consider first the main resonance in which the driving period equals the
natural period: T = T0. The closed phase trajectory for the steady-state oscillation
consists in this case of a single loop intersecting the ϕ-axis at the extreme points −ϕm

and ϕm. The angular separations of these points from the equilibrium position at
φ0 equal ϕm + φ0 and ϕm − φ0 on the left and right sides of φ0 respectively. The
upper part of the phase trajectory is a half-loop of a spiral whose focus is at the
point +φ0. While the representative point passes along this upper half-loop from
−ϕm to ϕm, the oscillator executes one half of a period of damped natural oscillation
about the equilibrium position φ0. When the oscillator reaches this extreme point,
the equilibrium position switches to the focus −φ0, and the representative point then
passes along the lower half-loop, thus closing the phase trajectory of the steady-state
motion.

The relative decrease of the amplitude because of viscous friction during one half
of the natural period (t = T0/2) equals exp(−γT0/2). So the left and right extreme
separations from φ0 for the upper half-loop are related to one another through this
exponential factor giving the frictional decay for a half-cycle:

(ϕm + φ0) exp(−γT0/2) = ϕm − φ0. (12)
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For the case in which γ ¿ ω0, that is, γT0 ¿ 1 (oscillator with relatively weak
friction), we can assume exp(−γT0/2) ≈ 1 − γT0/2. Using this approximation in
Eq. (12) and solving for ϕm, we obtain the desired estimate:

ϕm ≈ φ0
2

γT0/2
=

4
π

Q φ0. (13)

The product of the damping constant γ and the natural period T0 is expressed here
in terms of the quality factor Q = ω0/2γ.

Equation (13) shows that for resonance induced by the fundamental harmonic of
the square-wave external torque (T = T0) the amplitude of steady-state oscillation is
approximately Q times greater than the amplitude (4/π)φ0 of this harmonic in the
square-wave motion of the rod. (See Eq. (5).) The same conclusion can be reached
from a spectral approach to the treatment of stationary forced oscillations.

Through a similar (though more complicated) calculation we can evaluate the
maximal displacement in steady-state oscillations for any of the higher resonances
when the period of the square-wave external torque is an odd multiple of the natural
period. When the driving period is an even-numbered multiple of T0, the maximal
displacement of the flywheel in steady-state forced oscillations cannot exceed 2φ0. We
can easily see this from the shape of the corresponding phase trajectory: each of its
two symmetrical halves consists of an integral number of shrinking loops of a spiral
winding around one of the foci φ0 and −φ0. Figure 7 shows this kind of the phase
trajectory and the time-dependent graphs for a special case in which T = 4T0. For
T = 2T0, one complete cycle of the natural oscillation occurs while the equilibrium
position is displaced to one side. In the absence of friction both closed loops of the
steady-state phase trajectory meet at the origin of the phase plane, and the magnitude
ϕm of the maximal displacement on each side of the zero point just equals 2φ0. Friction
causes the loops to shrink, and the maximal displacement ϕm becomes somewhat less
than 2φ0.

For high frequencies of the external force, when the square-wave period T of the
driving rod is very short compared to the natural period T0 of the oscillator, in steady-
state motion the flywheel executes only small vibrations about the mid-point ϕ = 0.
The period of these vibrations is the same as that of the driving rod. They occur
in the opposite phase with respect to the rod motion, and their amplitude is small
compared to the amplitude φ0 of the rod.

Since the flywheel moves little while the position of the rod is fixed at either φ0 or
−φ0, we can consider the torque of the spring exerted on the flywheel as nearly constant
during the intervals between successive jumps of the rod. Therefore the graph of the
angular velocity consists of nearly rectilinear segments. Each segment corresponds to
the rotation of the flywheel in one direction with a uniform angular acceleration ω2

0φ0

caused by the constant torque of the strained spring. After each succeeding jump
the acceleration changes sign, remaining nearly the same in magnitude. In the graph
of the angular velocity the straight segments join to form a saw-toothed pattern of
isosceles triangles. The corresponding graph of the angular displacement is formed
by adjoining parabolic segments alternating after each half of the driving period. We
can easily find the height of these segments, that is, the maximal displacement ϕm,
by calculating the angular path of the rotor as it moves with a constant angular
acceleration ω2

0φ0 = 4π2φ0/T 2
0 from the zero point of the dial to ϕm during a quarter

driving period T/4: ϕm ≈ (π2/8)(T/T0)2φ0.



Square-wave excitation of a linear oscillator 12

Figure 7. The graphs of the time dependence of the angular position and of
the angular velocity together with the phase diagram for steady-state forced
oscillations at T = 4T0.

7. Energy transformations

The exchange of mechanical energy between the oscillator and the source of the
external driving force occurs in the investigated system only at the moments when
the driving rod jumps from one position to the other. During the intervals between
such jumps, while the oscillator executes damped natural oscillations about any of the
two displaced equilibrium positions, only an alternating partial conversion between
the elastic potential energy of the strained spring and the kinetic energy of the
flywheel occurs, accompanied by the gradual dissipation of mechanical energy because
of friction.

A parabolic potential well corresponds to each of the two equilibrium positions
of the oscillator (Fig. 8). When the flywheel is located at the angle ϕ from its central
position, the corresponding potential energy of the spring is given by one of the two
quadratic functions:

U(ϕ) =
1
2
k(ϕ∓ φ0)2. (14)

At an instantaneous jump of the driving rod from one position to the other the
angular velocity of the massive flywheel and hence its kinetic energy do not change.
An abrupt change occurs only in the value of the elastic potential energy of the
spring. This causes the representative point to make an abrupt vertical transition
from one of the parabolic potential wells to the other at a fixed value of the angle ϕ.
During the interval before the next jump, while the oscillator executes damped natural
oscillations about a displaced equilibrium position, the point which represents the total
energy travels back and forth between the walls of the corresponding potential well,
descending gradually toward the bottom because of energy losses caused by friction.
This behavior is clearly seen in Fig. 8.
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Figure 8. Energy transformations at steady-state oscillations with T = 3T0.
Curve 1 – potential energy, curve 2 – kinetic energy, curve 3 – total energy

It is important to note that in this simplified model of the physical system the
deformation of the spiral spring is assumed to be quasistatic. In other words, we ignore
the possibility that the spring vibrates as a system with distributed parameters, whose
each portion has both elastic and inertial properties. For a light spring (attached to
a comparatively massive flywheel) these vibrations are characterized by much higher
frequencies than the frequencies of the torsional oscillations of the flywheel. These
rapid vibrations of the spring quickly damp out.

The assumption concerning the quasistatic character of the spring deformation
in the mechanical model, i.e., the assumption of possibility to neglect rapid
vibrations of the spring as a system with distributed parameters, corresponds to the
ordinary implicit assumption that the current in the analogous oscillatory circuit is
quasistationary. According to this assumption, the momentary value of the current
is the same along the whole circuit. The assumption is valid if the inductance and
capacitance of the wires are negligible compared with the inductance of the coil and
the capacitance of the capacitor respectively. In this case the oscillatory circuit can be
treated as a system with lumped parameters (as a system with one degree of freedom),
in which all the capacitance is concentrated in the capacitor and all the inductance is
concentrated in the coil.

8. Concluding remarks

We have considered two different ways of determining the steady-state response of the
linear oscillator to a non-harmonic driving force. The traditional approach based on
the Fourier decomposition of the input driving force is certainly quite general because
it is applicable to an arbitrary periodic excitation. The second method based on
representing forced oscillations as some sequence of natural oscillations about displaced
equilibrium positions can be used only for piecewise constant excitations. Nevertheless,
this approach physically is much more obvious, and allows also to understand transient
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processes. Combining both approaches in teaching students, we can hope to give them
better understanding of this important topic.

The obvious, intuitive treatment of the transformation of a square-wave driving
force (an input) into the steady-state oscillations of the mechanical spring oscillator
(the output) described in this paper is equally valid for the transformation of an
input square-wave voltage into the output oscillations of charge in the analogous
electric circuit. Therefore behavior of this familiar mechanical system can help a
student to better understand why and how an electromagnetic oscillatory LCR-circuit
transfers the square-wave voltage from input to output with a distortion of its shape.
Mechanical analogies allow a direct visualization and thus can be very useful in gaining
an intuitive understanding of complex phenomena.

This simple mechanical system helps us to understand both the complex shape of
the output oscillations and also their spectral composition. Only those harmonics
of the input signal, which are close to the resonant frequency of the circuit, are
noticeably present in the output voltage across the capacitor. In other words, such
a resonant circuit selectively responds to different harmonic components of the input
signal. The greater the quality factor Q, the sharper the resonance curve, and the
finer the selectivity of the oscillatory circuit.

It is possible to easily vary the natural frequency ω0 = 1/
√

LC of a resonant
circuit by varying either the capacitance C or the inductance L. Such a tunable
resonant circuit with high selectivity can serve as a spectral instrument that is able to
accomplish the mathematical task of Fourier decomposition of a complex input signal
on a physical level. The mechanical system described in this paper provides a clear
and plain way to understand this possibility.
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